

Pall Corporation

Pocket Book

STREET.

TCM

Filtration. Separation. Solution.sm

Equipment Life Expectancy Factors

A study by Dr. E Rabinowicz at M.I.T. observed that 70% of component replacements or 'loss of usefulness' is due to surface degradation. In hydraulic and lubricating systems, 20% of these replacements result from corrosion with 50% resulting from mechanical wear.

Presented at the American Society of Lubrication Engineers, Bearing Workshop, 1981.

Sources of Contamination

Built in contaminants from components:

• Cylinders, fluids, hydraulic motors, hoses and pipes, pumps, reservoirs, valves, etc.

Generated contaminants:

- Assembly of system
- Operation of system
- Break-in of system
- Fluid breakdown

The Micrometre "µm"

'Micron' = micrometre = μ m 1 micron = 0.001 mm (0.000039 inch) 10 micron = 0.01 mm (0.0004 inch) Smallest dot you can see with the naked eye = 40 μ m Thickness of a sheet of looseleaf note paper = 75 μ m The micrometre is the standard for

measuring particulate contaminants in lubricating and fluid power systems.

External ingression:

Reservoir breathing

FATIGUE

- Cylinder rod seals
- Bearing seals

OBSOLESCENCE (15%)

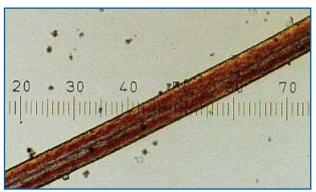
MECHANICAL WEAR (50%)

ABRASION

Component seals

Contaminants introduced during maintenance:

LOSS OF USEFULNESS


SURFACE DEGRADATION (70%)

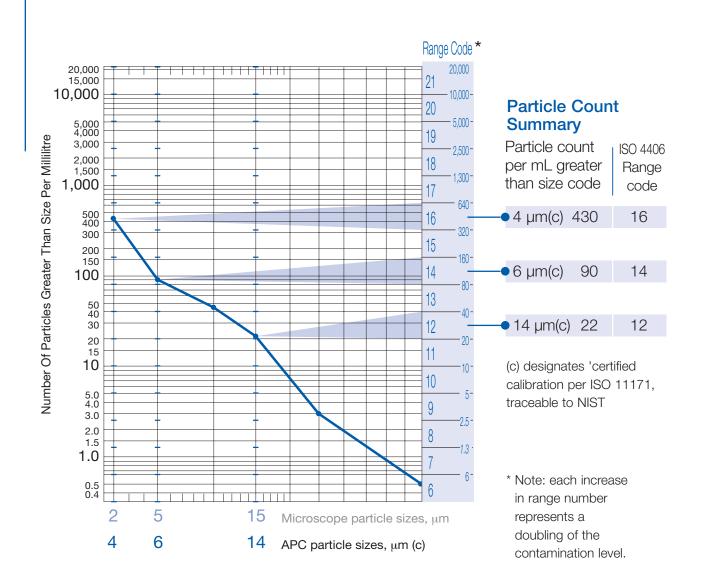
ACCIDENTS (15%)

ADHESION

CORROSION (20%)

- Disassembly/assembly
- Make-up oil

Human hair (75 µm), particles (10 µm) at 100x (14 µm/division)

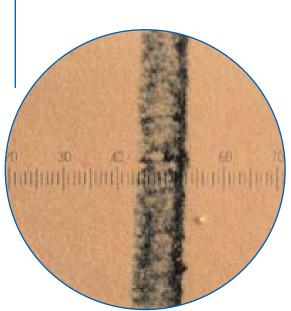

Relevant Filtration & Contamination Standards

ISO 2941	Filter elements - verification of collapse/burst pressure rating
ISO 2942	Filter elements - verification of fabrication integrity and determination of the first bubble point
ISO 2943	Filter elements - verification of material compatibility with fluids
ISO 3722	Fluid sample containers - qualifying and controlling cleaning methods
ISO 3724	Filter elements - determination of resistance to flow fatigue using particulate contaminant
ISO 3968	Filters - Evaluation of differential pressure versus flow characteristics
ISO 4021	Extraction of fluid samples from lines of an operating system
ISO 4405	Determination of particulate contamination level by the gravimetric method
ISO 4406	Method for coding the level of contamination by solid particles
ISO 4407	Determination of particulate contamination by the counting method using an optical microscope
ISO 10949	Guidelines for achieving and controlling cleanliness of components from manufacture to installation
ISO 11170	Filter Elements - sequence of tests for verifying performance characteristics
ISO 11171	Calibration of automatic particle counters for liquids
ISO 11500	Determination of particulate contamination by automatic particle counting using the light extinction principle
ISO 11943	Methods for calibration and validation of on-line automatic particle-counting systems
ISO 16889	Filter elements - Multi-pass method for evaluating filtration performance of a filter element
ISO 18413	Component cleanliness - Inspection document and principles related to contaminant collection, analysis and data reporting
ISO 23181	Filter elements - determination of resistance to flow fatigue using high viscosity fluids
SAE ARP4205	Filter elements - method for evaluating dynamic efficiency with cyclic flow

Fluid Analysis Methods for Particulate

Method	Units	Benefits	Limitations
Optical Particle Count	Number/mL	Provides size distribution. unaffected by fluid opacity, water and air in fluid sample	Sample preparation time
Automatic Particle Count	Number/mL	Fast and repeatable	Sensitive to 'silts', water, air and gels
Patch test and fluid contamination comparator	Visual comparison/ cleanliness code	Rapid analysis of systems fluid cleanliness levels in field. Helps to identify types of contamination	Provides approximate contamination levels
Ferrography	Scaled number of large/small particles	Provides basic information on ferrous and magnetic particles	Low detection efficiency on non- magnetic particles e.g. brass, silica
Spectrometry	PPM	Identifies and quantifies contaminant material	Cannot size contaminants; limited above 5 µm
Gravimetric	mg/L	Indicates total mass of contaminant	Cannot distinguish particle size. Not suitable for moderate to clean fluids. i.e. ISO 18/16/13

Understanding the ISO Cleanliness Code



The ISO code references the number of particles greater than 4, 6 and 14 μ m(c) in one millilitre of sample fluid.

To determine the ISO Cleanliness code for a fluid, the results of particle counting are plotted on a graph. The corresponding range code, shown at the right of the graph, gives the cleanliness code number for each of the three particle sizes.

5

ISO 4406 Cleanliness Code 13/12/10

Magnificat Scale:	Sample Volume: 100 mL Magnification: 100x Scale: 1 division = 10 µm Particle Count Summary		
Size	Particle Count Range per mL	ISO 4406 Code	NAS1638 (SAE AS4059)
>4 µm(c)	40 - 80	13	4
>6 µm(c)	20 - 40	12	4

10

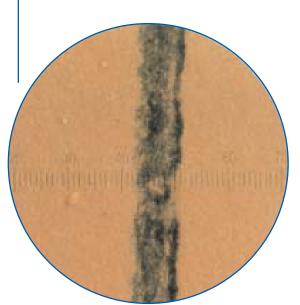

4

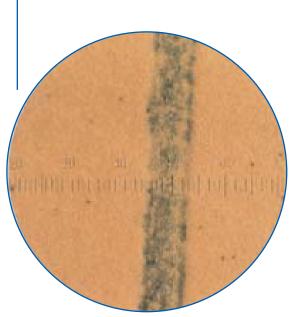
Photo Analysis

>14 µm(c) 5 - 10

Very little contamination is present. The visible particle is silica.

ISO 4406 Cleanliness Code 15/14/12

Sample Volume:	100 mL
Magnification:	100x
Scale:	1 division = 10 µm

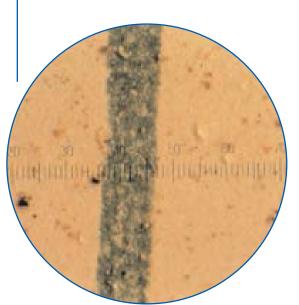

Particle Count Summary

Size	Particle Count Range per mL	ISO 4406 Code	NAS1638 (SAE AS4059)
>4 µm(c)	160 - 320	15	6
>6 µm(c)	80 - 160	14	6
>14 µm(c)	20 - 40	12	6

Photo Analysis

Little contamination is present. The visible contamination is silica.

ISO 4406 Cleanliness Code 17/15/13


Sample Vo Magnificat Scale:		100 mL 100x 1 divisio	n = 10 μr	n
Particle Co	ount Sum	mary		
Size	Particle Range		ISO 4406 Code	NAS1638 (SAE AS4059)
>4 µm(c)	640 - 1,	300	17	7

>6 µm(c) 7 160 - 320 15 >14 µm(c) 40 - 80 13 7

Photo Analysis

Very little contamination is present. The visible particle is black metal.

ISO 4406 Cleanliness Code 20/17/15

Sample Volume:	100 mL
Magnification:	100x
Scale:	1 division = 10 µm

Particle Count Summary

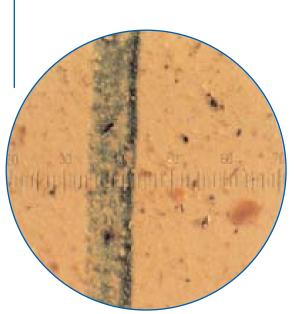

Size	Particle Count Range per mL	ISO 4406 Code	NAS1638 (SAE AS4059)
>4 µm(c)	5,000 - 10,000	20	10
>6 µm(c)	640 - 1,300	17	9
>14 µm(c)	160 - 320	15	9

Photo Analysis

Little contamination is present.

The visible contamination is silica and black metal.

ISO 4406 Cleanliness Code 20/19/16

Sample Vo Magnificati Scale:		100 mL 100x 1 divisior	n = 10 μr	n
Particle Co	ount Sum	mary		
Size		Particle Count Range per mL Code		NAS1638 (SAE AS4059)
>4 µm(c)	5,000 -	10,000	20	11

19

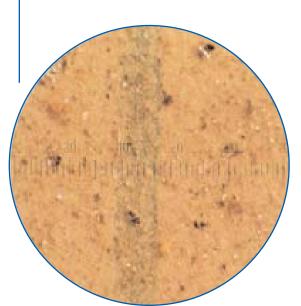
16

11

11

Photo Analysis

>6 µm(c)


>14 µm(c)

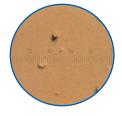
The visible contamination is mainly silica with some metallic and rust particles.

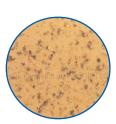
2,500 - 5,000

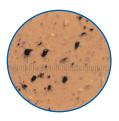
640 - 1,300

ISO 4406 Cleanliness Code 21/20/18

100 mL
100x
1 division = 10 µm


Particle Count Summary


Size	Particle Count Range per mL	ISO 4406 Code	NAS1638 (SAE AS4059)
>4 µm(c)	10,000 - 20,000	21	12
>6 µm(c)	5,000 - 10,000	20	12
>14 µm(c)	1,300 - 2,500	18	12


Photo Analysis

The visible contamination is mainly silica with some metallic and rust particles.

Types of Contamination

Silica

Hard, translucent particles often associated with atmospheric and environmental contamination, e.g., sand, dust.

Bright Metal

Shiny metallic particles, usually silver or gold in colour, generated within the system. Generated contaminants are products of wear and often cause additional component wear and accelerated fluid breakdown.

Black Metal

Oxidized ferrous metal inherent in most hydraulic and lubricating systems; built-in contaminant and genereated within the system by wear.

Rust

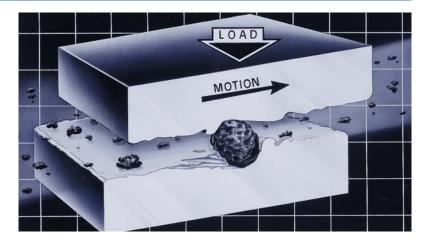
Dull orange/brown particles often seen in oil from systems where water may be present, e.g., oil storage tanks.

Fibers

Contaminants most commonly generated from paper and fabrics, e.g., shop rags.

Magnification: 100x Scale: 1 Division = 10 μm

Cake of Fines


Very large concentrations of 'silt'-size particles coat the analysis membrane and build-up into a cake. The cake obscures the larger particles on the membrane making contamination evaluation impossible.

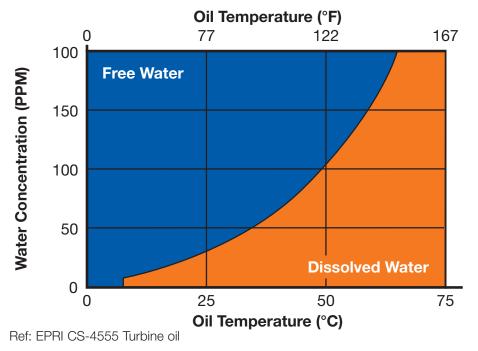
Typical Dynamic (Operating) Clearances

Component	Details	Clearances
	Servo	1 - 4 µm
Valves	Proportional	1 - 6 µm
	Directional	2 - 8 µm
	Piston to Bore	5 - 40 µm
Variable Volume Piston Pumps	Valve Plate to Cyl	0.5 - 5 μm
	Tip to Case	0.5 - 1 μm
Vane Pumps	Sides to Case	5 - 13 µm
	Tooth Tip to Case	0.5 - 5 μm
Gear Pumps	Tooth to Side Plate	0.5 - 5 µm
Ball Bearings	Film Thickness	0.1 - 0.7 μm
Roller Bearings	Film Thickness	0.4 - 1 µm
Journal Bearings	Film Thickness	0.5 - 125 µm
Seals	Seal and Shaft	0.05 - 0.5 μm
Gears	Mating Faces	0.1 - 1 µm

*Data from STLE Handbook on Lubrication & Tribology (1994)

To determine the recommended cleanliness level for a component use the 'Fluid Cleanliness Level Worksheet' on page 27.

"No system has ever failed from being too clean"

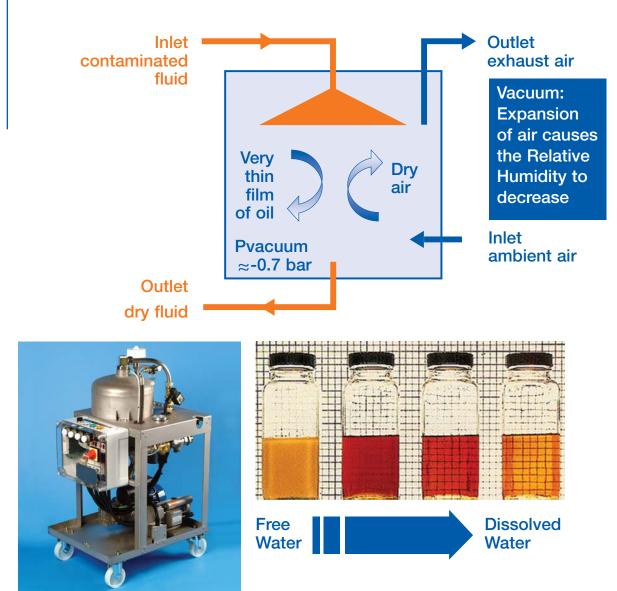

Water Contamination in Oil

Water contamination in oil systems causes:

- Oil breakdown, such as additive precipitation and oil oxidation
- Reduced lubricating film thickness
- Accelerated metal surface fatigue
- Corrosion

Sources of water contamination:

- Heat exchanger leaks
- Seal leaks
- Condensation of humid air
- Inadequate reservoir covers
- Temperature reduction causes dissolved water to turn into free water



To minimise the harmful effects of free water, water concentration in oil should be kept as far below the oil saturation point as possible.

10,000 PPM	1%
1,000 PPM	0.1%
100 PPM	0.01%

Principle: Mass transfer by evaporation under vacuum

Pall HNP006 Oil Purifier

Pall Fluid Conditioning Purifiers remove 100% of free water and entrained gases, and up to 90% of dissolved water and gases

Typical Applications

- Hydraulic oils
- Lubrication oils
- Dielectric fluids
- Phosphate-esters
- Quenching fluids

Water Content Analysis Methods

Method	Units	Benefits	Limitations
Crackle Test	None	Quick indicator of presence of free water	Does not permit detection below saturation
Chemical (Calcium hydride)	Percentage or PPM	A simple measurement of water content	Not very accurate on disolved water
Distillation	Percentage	Relatively unaffected by oil additives	Limited accuracy on dry oils
FTIR	Percentage or PPM	Quick and inexpensive	Accuracy does not permit detection below 0.1% or 1,000 PPM
Karl Fischer	Percentage or PPM	Accurate at detecting low levels of water (10 - 1,000 PPM)	Not suitable for high levels of water. Can be affected by additives
Capacitive Sensors (Water Sensors)	Percentage of saturation or PPM	Very accurate at detecting dissolved water, 0 - 100% of saturation.	Cannot measure water levels above saturation (100%)

WS04 Portable Water Sensor

WS08 In-line Water Sensor

Monitoring and Measurement

Obtaining accurate and reliable fluid cleanliness data quickly in order to detect abnormal contamination is a key factor in ensuring the efficiency of industrial processes and reducing downtime.

Reliable Monitoring Solutions... ...Whatever the Conditions...Whatever the Fluid

PCM400W

PCM400W Portable Cleanliness Monitor

Provides an assessment of system fluid cleanliness

- Proven multiple mesh blockage technology.
- Results not affected by water or air contamination.
- Designed for use with dark or cloudy fluids.
- ISO 4406, NAS 1638 or SAE AS4059 data output.

PFC400W

WS08

PFC400W Portable Particle Counter

Measures the size and quantity of particles in industrial system fluids

- Proven laser light blockage technology.
- Measures the size and quantity of particles in industrial fluids.
- ISO 4406, NAS 1638 or SAE AS4059 data output.

Pall Water Sensor

The next generation of in-line monitors for water contamination in system fluids

- Measures dissolved water content as % of saturation(%sat) or PPM.
- Portable and in-line models.

Component Cleanliness Measurement

xtractionon

Component Cleanliness Cabinets facilitate the accurate, reliable and repeatable determination of component cleanliness.

All stainless steel cabinets feature:

- Controlled extraction environment
- Automated cleaning to 'blank' values
- Pressurised solvent dispensing and recycling circuits.
- Meet ISO 18413, ISO 16232 and VDA 19 procedures.

PCC041

The **Pall** PCC 500 series cabinets combined extraction and analysis using filter blockage measurement techniques which are not affected by the presence of water or air in fluids.

PCC030

nalvsis

Component Contamination

Component Contamination

rocess Optimizationon

- Developing optimization
- Developing and validation of cleanliness standard
- Cleaner fluids
- Laboratory services

Pall Consultancy Build it Clean Keep it Clean

Fluid Sampling Procedure

Introduction

There are 4 methods for taking fluid samples. Method 1 is the best choice followed by Method 2. Method 3 should only be used if there is no opportunity to take a line sample, and Method 4 should only be used if all others are impracticable.

DO NOT obtain a sample from a reservoir drain valve. Always take the sample under the cleanest possible conditions, and use pre-cleaned sample bottles.

If there are no line mounted samplers, fit a Pall sampling device to the Pall filter.

Method 1

Small ball valve with PTFE or similar seats, or a test point

- 1. Operate the system for at least 30 minutes prior to taking sample in order to distribute the particulate evenly.
- Open the sampling valve and flush at least 1 litre of fluid through the valve. Do not close the valve after flushing.
- 3. When opening the sample bottle, be extremely careful not to contaminate it.
- 4. Half fill the bottle with system fluid, use this to rinse the inner surfaces and then discard.
- 5. Repeat step 4 a second time without closing the valve.
- 6. Collect sufficient fluid to fill 3/4 of bottle (to allow contents to be redistributed).
- Cap the sample immediately and then close the sample valve.
 Caution: Do not touch the valve while taking the sample.
- 8. Label the sample bottle with system details and enclose in a suitable container for transport.

Method 2

Valve of unknown contamination shedding capabilities

- 1. Operate the system for at least 30 minutes prior to taking sample in order to distribute particulate evenly.
- Open the sampling valve and flush at least 3 to 4 Litres of fluid through the valve. (This is best accomplished by connecting the outlet of the valve back to the reservoir by using flexible tubing). Do not close the valve.
- Having flushed the valve, remove the flexible tubing from the valve with the valve still open and fluid flowing. Remove the cap of the sample bottle and collect sample according to instructions 4 to 6 of Method 1.
- 4. Cap the sample immediately and then close the sample valve.
 Caution: Do not touch the valve while taking the sample.
- 5. Label the sample bottle with system details and enclose in a suitable container for transport.

Fluid Sampling Procedure (continued)

Method 3

Sampling from Reservoirs and Bulk Containers

Applicable only if Methods 1 and 2 cannot be used

- 1. Operate the system for at least 30 minutes prior to taking sample in order to distribute the particles evenly.
- 2. Clean the area of entry to the reservoir where sample will be obtained.
- Flush the hose of the vacuum sampling device with filtered (0.8 μm) solvent to remove contamination that may be present.
- 4. Attach a suitable sample bottle to the sampling device, carefully insert the hose into the reservoir so that it is mid-way into the fluid. Take care not to scrape the hose against the sides of the tank or baffles within the tank as contamination may be sucked into the hose.
- 5. Pull the plunger on the body of the sampling device to produce vacuum and half fill the bottle.
- 6. Unscrew bottle slightly to release vacuum, allowing hose to drain.
- Flush the bottle by repeating steps 4 to 6 two or three times.
- 8. Collect sufficient fluid to 3/4 fill the sample bottle, release the vacuum and unscrew the sample bottle. Immediately recap and label the sample bottle.

Method 4 Bottle Dipping

Least preferred method

- 1. Operate the system for at least 30 minutes prior to taking sample in order to distribute particulate evenly.
- 2. Clean the area of entry to the reservoir where sample will be obtained.
- 3. Ensure the outside of the bottle is clean by flushing with filtered solvent.
- Remove cap from the sample bottle. Carefully fill the sample bottle by dipping it into the reservoir and then discard the fluid after rinsing the inside of the sample bottle.
- 5. Repeat step 4. Carefully fill the sample bottle, cap immediately and wipe the outside.
- 6. Secure any openings in the reservoir.

Note: Incorrect sampling procedures will adversely effect the cleanliness level in the sample bottle.

It is impossible to make a sample cleaner than the actual system but very easy to make it dirtier.

Filter location

Flushing Filter

- To remove particles that have been built-in to the system during assembly or maintenance before start-up.
- To remove large particles that will cause catastrophic failures.
- To extend 'in-service' filter element life.

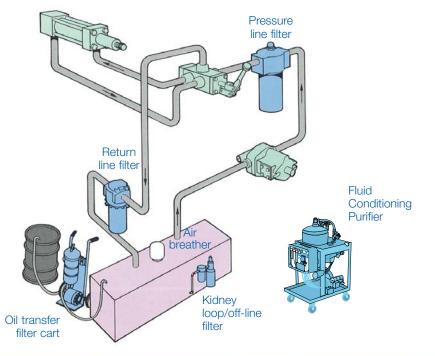
Pressure Line

- To stop pump wear debris from travelling through the system.
- To catch debris from a catastrophic pump failure and prevent secondary system damage.
- To act as a Last Chance Filter (LCF) and protect components directly downstream of it.

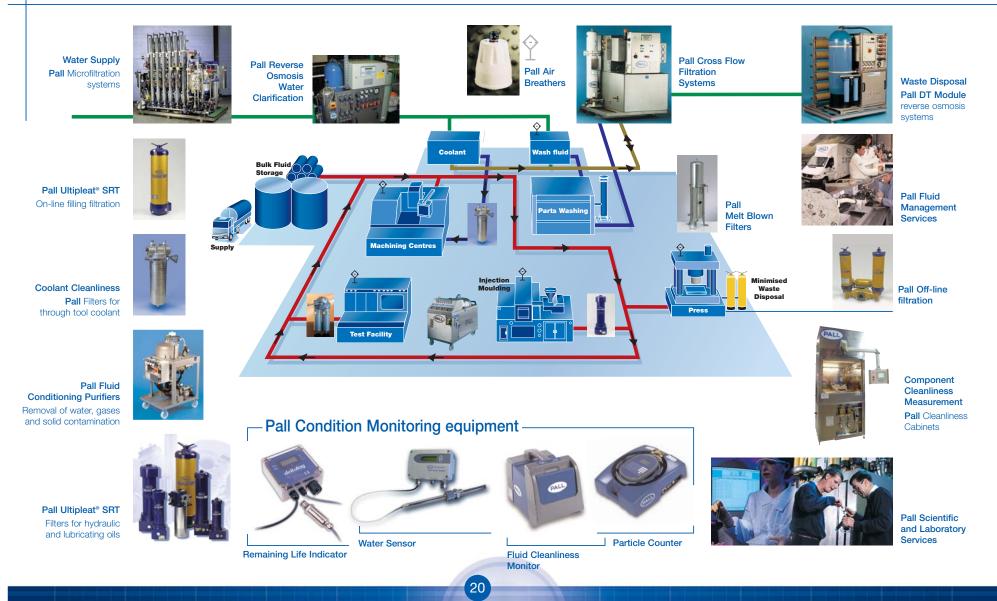
Return Line

- To capture debris from component wear or ingression travelling to the reservoir.
- To promote general system cleanliness.

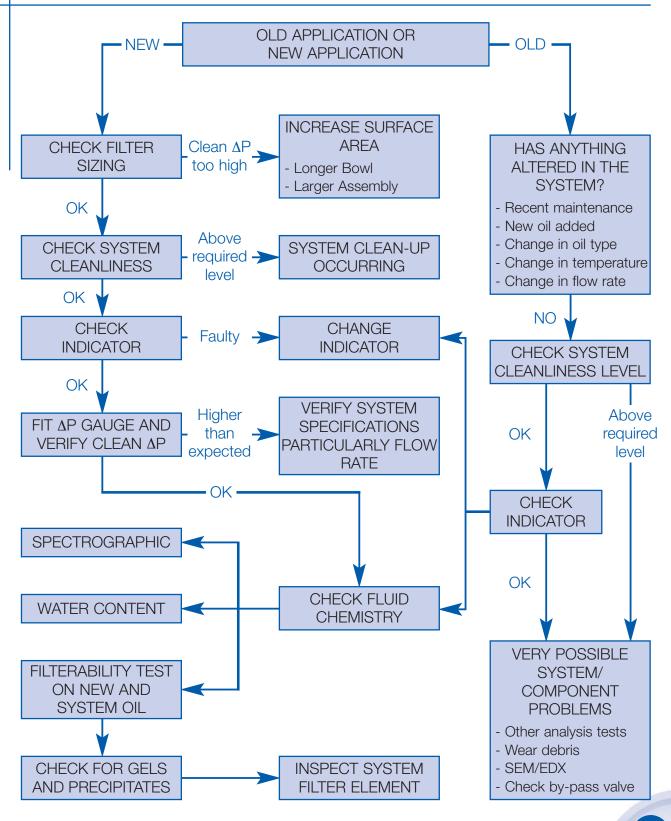
Air breather


- To prevent ingression of airborne particulate contamination.
- To extend filter element service life.
- To maintain system cleanliness.

Kidney loop/off-line


- To control system cleanliness when pressure line flow diminishes (i.e. compensating pumps).
- For systems where pressure or return filtration is impractical.
- As a supplement to in-line filters to provide improved cleanliness control and filter service life in high dirt ingression systems.

Additional filters should be placed ahead of critical or sensitive components


- To protect against catastrophic machine failure (often non-bypass filters are used).
- To reduce wear
- To stabilize valve operation (prevents stiction).

The Pall concept of Total Cleanliness Management in practice

Short Element Life Checklist

19

A revolutionary filter technology for hydraulic and lube applications

- Smaller size
- Increased resistance to system stresses
- High flow capability
- Improved cleanliness control
- Increased equipment protection

Media Substrate Support Layer (not shown): Provides support for the media and aids in drainage flow.

Benefit: Reliable, consistent performance

Proprietary Cushion Layer: Provides support for the media and protection from handling.

Benefit: Reliable, consistent performance

O-ring Seal: Prevents contaminant bypassing the filtration media under normal operation.

Benefit: Reliable, consistent filtration performance.

Proprietary Outer Helical Wrap: Tightly

bonds to each pleat for stability and strength.

Benefit: Reliable, consistent performance and resistance to severe operating conditions.

Up and Downstream

Mesh Layers: Create flow channels for uniform flow through the filter.

Benefit: Extended element life for lower operating costs.

Coreless/Cageless

Design: Outer element cage is a permanent part of the filter housing

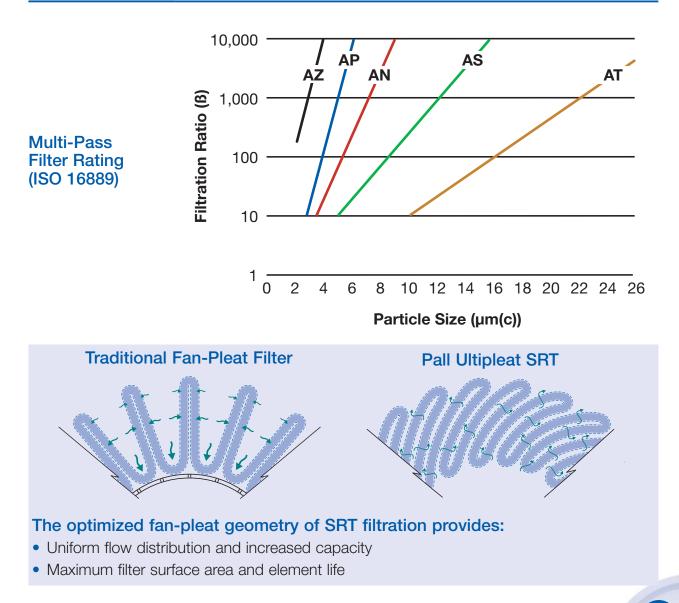
Benefit: Lighter, environmentally friendly element for reduced disposal costs and ease of element change-out.

SRT Media: Inert,

inorganic fibers securely bonded in a fixed, tapered pore structure with increased resistance to system stresses such as cyclic flow and dirt loading.

Benefit: Improved performance over the life of the filter and more consistent fluid cleanliness.

Auto-Pull Element Removal Tabs:


Corrosion-resistant endcaps feature exclusive Auto-Pull tabs for automatic element extraction upon opening the housing.

Benefit: Ease of element change-out.

Pall Ultipleat[®] SRT Filter Performance Data

Ultipleat SRTCleanliness Code Rating (ISO 4406)Gradebased on SAE ARP 4205	
AZ	08/04/01
AP	12/07/02
AN	15/11/04
AS	16/13/04
AT	17/15/08

Pall Ultipleat[®] SRT Housing Range

High Pressure Series

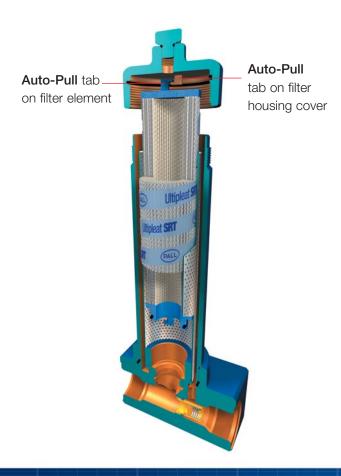
UH Flow Rate **Pressure Rating** USgpm Series L/min bar psi 30 350 209 110 5,075 219 230 420 6,100 60 239 350 90 420 6,100 319 600 160 420 6,100

UH Series	Port Sizes (inches)	Length (inches)
209	3/4, 1	3, 7
219	1, 11/4	4, 8, 13, 20
239	11/4, 11/2	8, 13, 20
319	11/4, 11/2, 2	8, 13, 20, 40

Return Line Series

UR Series		Flow Rate L/min USgpm		e Rating psi
209	130	35	41	600
219	265	70	41	600
319	760	200	41	600
619	835	220	28	400
629	1050	280	28	400
649	1500	400	28	400
699	835	220	28	400

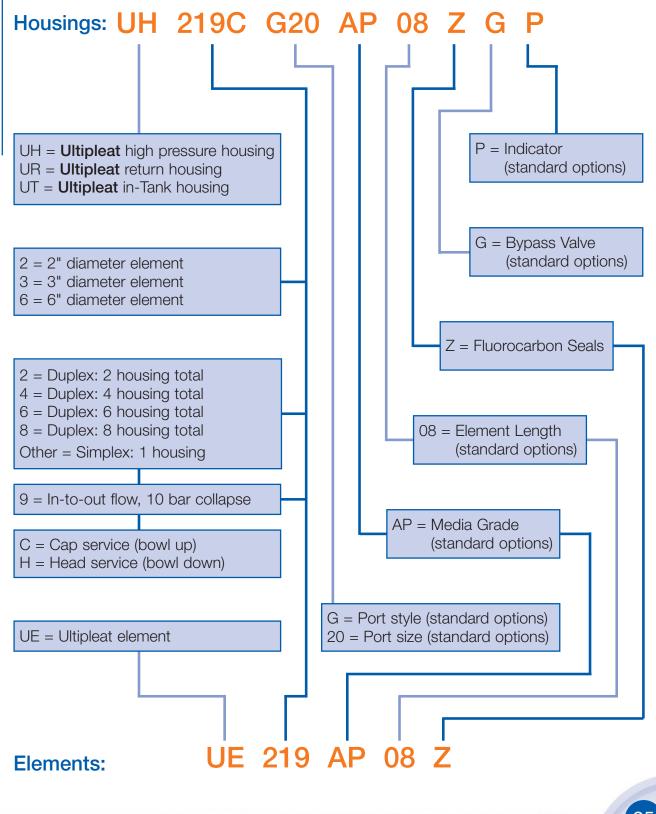
UR Series	Port Sizes (inches)	Length (inches)
209	3/4, 1	3, 7
219	3/4, 1, 11/4	4, 8, 13, 20
319	11/2, 2, 21/2	8, 13, 20, 40
619	11/2, 2, 21/2	20, 40
629/49	3, 4	20, 40
699	2, 21/2, 3	20, 40


Pall Ultipleat[®] SRT Housing Range (continued)

In-Tank Series

UT Series	Flow Rate L/min	USgpm	Pressure bar	e Rating psi
279	130	35	10	150
319	760	200	10	150

UT Series	Port Sizes (inches)	Length (inches)
279	³ /4, 1 , 1 ¹ /4	4, 8, 13, 20
319	11/2, 2, 21/2	8, 13, 20, 40



Auto-Pull Element Removal Mechanism

Ultipleat SRT filter assemblies feature Pall's unique Auto-Pull element removal mechanism, allowing easy element removal from the filter housing.

When the cover or tube (depending on assembly design) is unscrewed from the housing, tabs on the filter element endcaps fit into hooks in the housing. Thus, as the cover or tube is unscrewed, the element is automatically pulled from the tube. This eliminates the need to reach into the tube to grab an endcap or handle and manually pull out the element.

Pall Ultipleat[®] SRT Filter Part Numbering

25

Melt Blown Filter Technology

Recommended for industrial applications to treat water, fuels, aqueous solutions and low viscosity process fluids.

Fan pleat geometry

Laid-over pleat geometry

Melt Blown Technology

The term 'Melt blown' means the filter has been manufactured using a computer controlled process where fibers are collected to produce in a graded pore structure about a moulded core.

Different media configurations are suited to different applications and specific user requirements. The **Pall** Melt Blown filter element range is available in depth, fan pleated and patented laid over pleat (**Ultipleat**) designs.

Recognizing that different applications have different fluid cleanliness and filtration requirements, the **Pall** range of Melt Blown filter products are simply defined to help you choose the best solution at the most economic cost.

Particulate Control	Efficiency Rating%	Recommended Range (µm)
Highly Critical	99.98%	1, 3, 6, 12, 20
Critical to General	99.9%	40, 70, 90
General	90%	100, 150, 200

A wide range of filter housings are also available.

Recommended Fluid Cleanliness Level Worksheet*

Selection of the appropriate cleanliness level should be based upon careful consideration of the operational and environmental conditions. By working through this list of individual parameters, a total weighting can be obtained which when plotted on the graph on page 27, provides a Recommended Cleanliness Level (RCL).

Table 1. Operating Pressure and Duty Cycle

Duty	Examples	Operating Pressure (bar (psi))				Actual	
		0-70 (0-1000)	>70-170 (>1000-2500)	>170-275 (>2500-4000)	>275-410 (>4000-6000)	>410 (>6000)	
Light	Steady duty	1	1	2	3	4	
Medium	Moderate pressure variations	2	3	4	5	6	
Heavy	Zero to full pressure	3	4	5	6	7	
Severe	Zero to full pressure with high frequency transients	4	5	6	7	8	

Table 2. Component Sensitivity

Sensitivity	Examples	Weighting	Actual
Minimal	Ram pumps	1	
Below average	Low performance gear pumps, manual valves, poppet valves	2	
Average	Vane pumps, spool valves, high performance gear pumps	3	
Above average	Piston pumps, proportional valves	4	
High	Servo valves, high pressure proportional valves	6	
Very high	High performance servo valves	8	

Table 3. Equipment Life Expectancy

Life Expectancy (hours)	Weighting	Actual
0-1,000	0	
1,000-5,000	1	
5,000-10,000	2	
10,000-20,000	3	
20,000-40,000	4	
>40,000	5	

Table 4. Component Replacement Cost

Replacement Cost	Examples	Weighting	Actual
Low	Manifold mounted valves, inexpensive pumps	1	
Average	Line mounted valves and modular valves	2	
High	Cylinders, proportional valves	3	
Very high	Large piston pumps, hydrostatic transmission motors, high performance servo components	4	

Table 5. Equipment Downtime Cost

Downtime Cost Examples		Weighting	Actual
Low	Equipment not critical to production or operation	1	
Average	Small to medium production plant	2	
High	High volume production plant	4	
Very high	Very expensive downtime cost	6	

Table 6. Safety Liability

Safety Liability	Examples	Weighting	Actual
Low	No liability	1	
Average	Failure may cause hazard	3	
High	Failure may cause injury	6	

* Adapted from BFPA/P5 Target Cleanliness Level Selector 1999 Issue 3.

Table 7. Cleanliness Requirement Total

Cleanliness Requirement Total Weighting

Sum of 'Actual' weighting from sections 1 through 6

Using the chart below, determine where the 'Cleanliness Requirement Total Weighting' number from Table 7 intersects the red line. Follow across to the **left** to find the recommended ISO 4406 Code.

Total

Table 8. Environmental Weighting

Environment	Examples	Weight Single Filter	ing Multiple Filters	Actual
Good	Clean areas, few ingression points, filtered fluid filling, air breathers	0	-1	
Fair	General machine shops, some control over ingression points	1	0	
Poor	Minimal control over operating environment and ingression points e.g. on-highway mobile equipment)	3	2	
Hostile	Potentially high ingression (e.g. foundries, concrete mfg., component test rigs, off-highway mobile equipment)	5	4	

* Single filter or multiple filters with the same media grade on the system.

Table 9. Required Filtration Level

Filtration Requirement Total Weighting			
Add Environmental Weighting (Table 8) to Cleanliness Requirement Total (Table 7)			

Using the chart below, determine where the 'Required Filtration Level' total in Table 9 intersects the red line. Follow across to the **<u>right</u>** to find the corresponding recommended Pall filter grade.

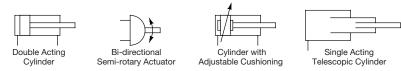
Viscosity Conversions

Kinematic cSt (mm²/s)	Saybolt Universal Seconds (SUS)	
	40°C (104°F)	100°C (212°F)
5	42	43
10	59	59
15	77	78
20	98	99
25	119	120
30	142	143
35	164	165
40	187	188
45	210	211
50	233	234
55	256	257
60	279	280
65	302	303
70	325	326
75	348	350
100	463	466
200	926	933
400	1853	1866
600	2779	2798

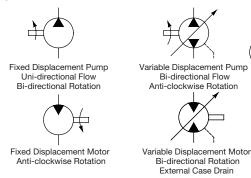
To Convert to	at	Multiply cSt at same temperature by
SUS	40°C (104°F)	4.63
SUS	100°C (212°F)	4.66
Redwood N°1	60°C (140°F)	4.1
Engler	All temperatures	0.13

 $\gamma = \frac{\mu}{\rho}$

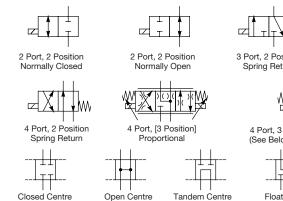
 γ = Kinematic viscosity of fluid in cSt (mm²/s)

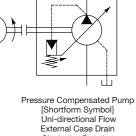

 $\dot{\mu}$ = Dynamic viscosity of fluid in cP (Pa.s)

 ρ = Density of fluid (kg/m³)

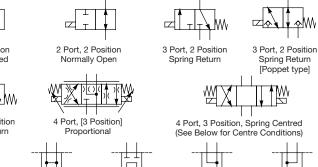

Common Fluid Power Circuit Diagram Symbols

ISO1219-1: Fluid power systems and components - Graphic symbols and circuit diagrams -Part 1: Graphic symbols for conventional use and data processing applications.

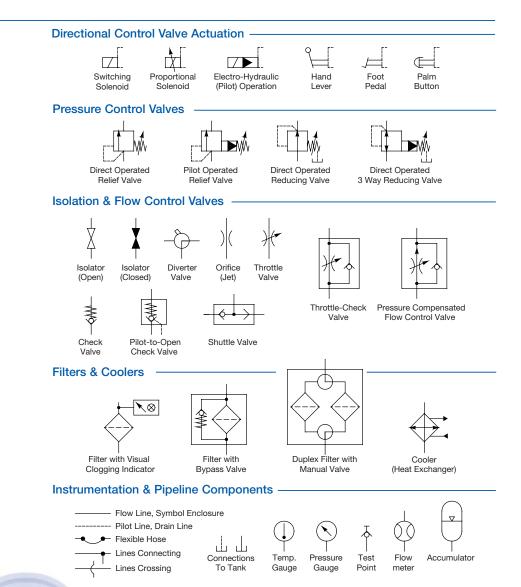

Cylinders & Semi-rotary Actuators

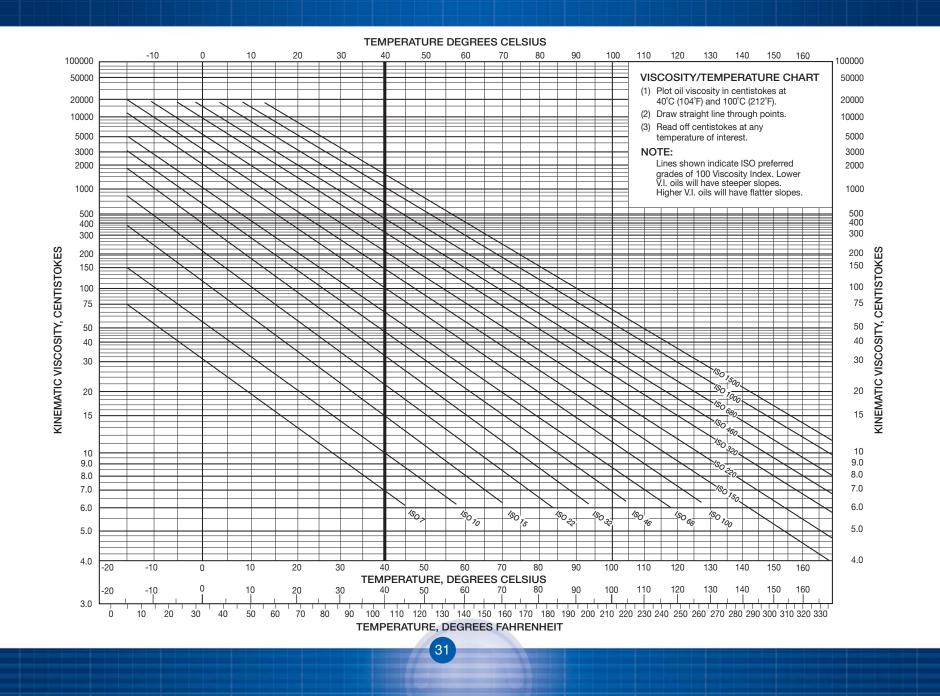


Pumps & Motors

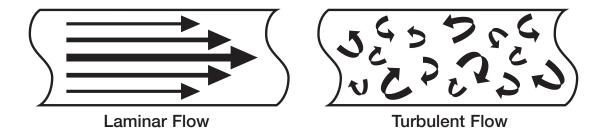



Directional Control Valves (Unspecified Actuation)





Clockwise Rotation Electric Motor Driven



Flushing Procedures and Formula

The aim of flushing is to remove contamination from the inside of pipes and components which are introduced during system assembly or maintenance. This is accomplished by passing fluid through the system, usually at a velocity higher than that during normal operation.

Omission or curtailment of flushing will inevitably lead to rapid wear of components, malfunction and breakdown.

Reynolds N^O (Re): A non-dimensional number that provides a qualification of the degree of turbulence within a pipe or hose.

 $\label{eq:lambda} \begin{array}{l} \mbox{Laminar Flow - Reynolds $N^{o} < 2,000$} \\ \mbox{Transitional Flow - Reynolds $N^{o} > 2,000$ - 4,000$} \\ \mbox{Turbulent Flow - Reynolds $N^{o} > 4,000$} \end{array}$

The flow condition in a pipe or hose can be assessed using Reynolds N^o as follows:

$$Re = \frac{Ud}{v} \times 1,000 \quad or$$

Re = 21,200 x Q / ($_{y}$ x d)

Re = Reynolds No

- U = Mean flow velocity (m/s)
- d = Pipe internal diameter (mm)
- γ = Kinematic viscosity of fluid in cSt (mm²/s)
- Q = Flow rate (L/min)

English / Metric Conversions

Pressure - psi and bar 1 psi = 0.067 bar 1 bar = 14.5 psi			Hydraulic 1 USgpm = 3	Flow - USg .79 litres/min		res/minute 0.264 USgpm	
psi	bar	bar	psi	USgpm	L/min	L/min	USgpm
20	1.38	1	14.5	5	18.9	5	1.3
30	2.07	2	29.0	10	37.9	10	2.6
40	2.77	3	43.5	15	56.8	20	5.3
50	3.45	4	58.0	20	75.7	30	7.9
60	4.14	5	72.5	25	94.6	40	10.6
70	4.83	6	87.0	30	114	50	13.2
80	5.52	7	102	35	133	60	15.9
90	6.21	8	116	40	151	70	18.5
100	6.90	9	131	45	170	80	21.1
200	13.8	10	145	50	189	90	23.8
300	20.7	15	218	55	208	100	26.4
400	27.6	20	290	60	227	125	33.0
500	34.5	25	363	65	246	150	39.6
600	41.4	30	435	70	265	200	52.8
700	48.3	35	508	75	284	250	66.1
800	55.2	40	580	80	303	300	79.3
900	62.1	45	653	85	322	350	92.5
1,000	69	50	725	90	341	400	105.7
1,100	75.9	55	798	95	360	450	118.9
1,200	82.8	60	870	100	379	500	132.1
1,300	89.7	65	943	125	473	550	145.3
1,400	96.6	70	1,015	150	568	600	158.5
1,500	104	75	1,088	175	662	650	171.7
1,600	110	80	1,160	200	757	700	184.9
1,700	117	85	1,233	225	852	750	198.2
1,800	124	90	1,305	250	946	800	211.4
1,900	131	95	1,378	275	1,040	900	237.8
2,000	138	100	1,450	300	1,140	1,000	264.2
2,250	155	150	2,175	1 gpm (US) :	= 0.832 gpm (l	JK)	
2,500	172	200	2,900	Note: Values	to 3 significan	t figures	
2,750	190	250	3,630		0	C	
3,000	207	300	4,350				
3,500	241	350	5,080				
4,000	258	400	5,800				
4,500	310	450	6,530				
5,000	345	500	7,250				

Measurement Conversion Factors

To Convert	Into	Multiply By
Into	To Convert	Divide By
Litre	Cubic metre	0.001
Litre	Gallon (US)	0.2642
Litre	Gallon (UK)	0.22
Micrometre (Micron)	Inch	0.000039
Foot	Inch	12
Inch	Millimetre	25.4
Metre	Foot	3.28
Metre	Yard	1.09
Mile	Kilometre	1.609
Litre/sec	Cubic metre/min	0.06
Metre/sec	Kilometre/hour	3.6
Kilogram	Pound	2.205
Pound	Ounce	16
Kilowatt	Horsepower	1.341
Kilowatt	BTU/hour	3412
Atmosphere	PSI	14.7
Bar	PSI	14.5
KiloPascal	PSI	0.145
Bar	KiloPascal	100
Bar	Inches of mercury (Hg)	29.53
Inches of Water	Pascal (Pa)	249
Celsius (Centigrade)	Fahrenheit	°C x 1.8 + 32
Degree (Angle)	Radian	0.01745

To convert units appearing in column 1 (left column) into equivalent values in column 2 (centre column), **multiply** by factor in column 3. Example: To convert 7 Litres into Cubic Metres, **multiply** 7 by 0.001 = 0.007.

To convert units appearing in column 2 (centre) into equivalent values of units in column 1 (left column), **divide** by factor in column 3. Example: To convert 25 psi into bar, **divide** 25 by 14.5 = 1.724.

Pall Contact Details

Portsmouth - UK +44 23 9230 3303 te +44 23 9230 2507 fa		8061 3800	tel fax	Honefoss - Norway +47 3218 1470 +47 3218 1487	tel fax
New York - USA +1 516 484 3600 te +1 516 484 3651 fa	el +49 610		tel fax	Warszawa - Poland +48 225 102 100 +48 225 102 101	tel fax
New Port Richey - USA +1 727 849 9999 te +1 727 815 3115 fa	+91 22	i - India 5 599 5555 5 599 5556	tel fax	Moscow - Russia +7 095 787 7614 +7 095 787 7615	tel fax
Buenos Aires - Argentin +54 1 814 4730 te +54 1 814 4724 fa	+62 217	- Indonesia 7 883 0088 7 884 5551	tel fax	Singapore - Singapore +011 65 6389 6500 +011 65 6389 6520	e tel fax
Melbourne - Australia +613 9584 8100 te +613 9584 6647 fa	100 02	47 7961	tel fax	Madrid - Spain +34 91 657 9800 +34 91 657 9844	tel fax
Ontario - Canada +1 905 542 0330 te +1 905 542 0331 fa	+0100	-	tel fax	Taipei - Taiwan +886 2 2545 5991 +886 2 2545 5990	tel fax
Beijing - China +86 10 67802288 te +86 10 67802238 fa	102 200	Korea 6 0 7800 6 9 9092	tel fax	Dubai - UAE +971 4 340 6204 +971 4 340 6205	tel fax

Johannesburg - ZAF

+27	11	266 2300	tel
+27	11	266 3243	fax

Visit us on the web at www.pall.com

Pall Corporation has offices and plants throughout the world in locations including: Argentina, Australia, Austria, Belgium, Brazil, Canada, China, France, Germany, India, Indonesia, Ireland, Italy, Japan, Korea, Malaysia, Mexico, the Netherlands, New Zealand, Norway, Poland, Puerto Rico, Russia, Singapore, South Africa, Spain, Sweden, Switzerland, Taiwan, Thailand, United Arab Emirates, United Kingdom, United States, and Venezuela. Distributors are located in all major industrial areas of the world.

Because of developments in technology these data or procedures may be subject to change. Consequently we advise users to review their continuing validity annually. Part numbers quoted above are protected by the Copyright of Pall Europe Limited.

Pall and Ultipleat are trademarks of Pall Corporation.
 Filtration. Separation. Solution is a service mark of Pall Corporation.
 indicates a trademark registered in the USA.
 2006, Pall Europe Limited.