Red Blood Cell Hemolysis During Processing

Samuél O. Sowemimo-Coker

Red blood cell (RBC) hemolysis has been reported in
units of RBC for transfusion. This has significant clinical
implications for transfused patients because the free
hemoglobin dissociates into dimers that have to be
bound to haptoglobin to be removed by the reticuloen-
dothelial system. Once the binding capacity of hapto-
globin has been exceeded, hemoglobinemia occurs. He-
.molysis is caused by the breakdown of the RBC, causing
release of hemoglobin and resulting in the discoloration
of the plasma. Abnormal hemolysis in an individual RBC
unit may be caused by several factors including inappro-
priate handling during processing of blood, inappropri-
ate storage conditions, bacterial hemolysins, antibodies
that cause complement lysis, defects in the RBC mem-
brane, or an abnormality in the blood donor. The degree

EMOLYSIS REPRESENTS the breakdown
or disruption of the integrity of the red blood
cell (RBC) membrane causing the release of he-
moglobin. Hemolysis in blood products is usually
manifested by the presence of free hemoglobin in
the red cell suspending media, such as plasma or
additive solutions. Some diseases such as hemo-
lytic anemia or processes such as centrifugation of
blood can cause premature breakdown of RBCs.
Although much has been accomplished to im-
prove RBC stability during processing, storage,
and transfusion, being outside the body enhances
the risk of hemolysis. Some of the factors that are
believed to cause hemolysis are discussed later and
include shear stress caused by high velocities and
turbulence in flowing blood or during processing
and contact with plastic surfaces in tubing, bags,
and so on.

FACTORS ASSOCIATED WITH HEMOLYSIS
DURING STORAGE

Preparative Procedures

The procedures that are used in blood banks to
collect and process whole blood into different
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of hemolysis is described as the percent of free hemo-
globin in relation to the total hemoglobin with appro-
priate correction for the hematocrit. The acceptable
level of hemolysis has not been established in North
America, but the value of 1% currently is used to assess
biocompatibility of blood storage materials, whereas
the Council of Europe has set the standard at 0.8%. This
report emphasizes the need for the adequate control of
the various processes that are involved in the prepara-
tion of RBCs from whole blood to minimize the occur-
rence of hemolysis. Careful evaluation of manufacturing
processes will minimize RBC wastage caused by
hemolysis.
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components may also cause RBC breakdown to
release hemoglobin into the supernatant plasma.
Examples include the delay between collection and
separation, rapid anticoagulation (including mix-
ing of anticoagulant with blood), large variation
in centrifugation speeds, rapid resuspension of
packed red cells in additive solutions, and varia-
tions in blood storage bag configurations or com-
positions.!” When a full unit of blood cannot be
collected from a donor, there is a risk of RBC
damage because of the relatively high ratio of the
anticoagulant solution to blood. In addition, high
centrifugation speeds that are used to enhance
maximum recovery of plasma may result in exces-
sive RBC packing to a hematocrit of over 80%.
Hard-packed RBCs in citrate phosphate dextrose
anticoagulant have been shown to have reduced
viability and increased hemolysis during storage.!-
The containers in which RBCs are stored before
filtration have also been found to affect the extent
of hemolysis. Some of the commonly used stor-
age bags contain extractable and nonextractables
plasticizers such as di-(2-ethylhexyl) phthalate
(DEHP) and tri-(2-ethylhexyl) trimellate, respec-
tively. DEHP has been shown to decrease the rate
of hemolysis during storage.10-16 Plastic containers
that do not contain DEHP have been shown to be
associated with significant increase in RBC hemo-
lysis well above 1% at the end of 42 days of
storage. For example, RBC units that are stored in
polyvinylchloride (PVC) containers plasticized with
butyrl-n-trihexyl-citrate (BTHC) had a mean su-
pernatant hemoglobin concentration of 850 mg/dL
with an upper limit of 1,470 mg/dL.1°® Some of
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these non-DEHP bags are used by a number of
manufacturers for the licensed storage of packed
RBCs.11-16 Therefore, RBC units that are damaged
during the preparative procedures and then stored
in non-DEHP bags are more likely to hemolyze
either during storage or further manipulation or
handling. In addition to the preceding discussion,
packed RBCs are also sometimes washed in salinie
before transfusion. This additional manipulation of
the cells may also contribute to RBC damage as
more of the protective plasma protein layers cov-
ering the cells are removed by washing.

Shear Stress and Mechanical Hemolysis

Hemolysis is sometimes caused by turbulent
shear stress (Reynolds stress), which may occur at
the following: the edges of kinked tubing, partially
opened transfer tube closures, and entry ports into
blood collection bags during stripping of red cells
in sample tube segments into partially opened
blood collection bags. Shear-induced damage to
RBC may occur during the resuspension of hard-
packed RBC. Shaking or agitation of the blood bag
during mixing before filtration may also cause the
more fragile and older RBCs to lyse. Low shear
stress in the range of 1,000-1,500 dyne/cm?, simi-
lar to that during gravity priming or filtration, may
not by itself be sufficient to cause hemolysis.!7-24
However, in situations of turbulent flow in blood
storage containers with abnormal surface rough-
ness or geometric imperfection, hemolysis may
occur.21,22 For example, turbulent shear stresses
created by fluid dynamic characteristics of pros-
thetic valve can damage RBCs, resulting in signif-
icant hemolysis in patients with valve replace-
ments.25 RBCs may be damaged if they are forced
through leukocyte reduction filters, small bore nee-
dles, narrow openings, kinked or twisted intrave-
nous tubing, or partially obstructed or occluded
blood storage bags.26-30 Mechanical or traumatic
hemolysis is more likely to occur in undiluted RBC
concentrates with high hematocrits than in whole
blood or diluted RBC concentrates having lower
hematocrit levels and viscosities.??

Bacterial Contamination

Abnormal hemolysis in an RBC unit may also
be caused by bacterial contamination. Therefore,
the presence of particular matter, clots, change in
color (if the cells or plasma have brownish or
purplish discoloration), abnormal masses in the
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liquid blood, opaque or muddy plasma, presence of
gas or peculiar odour in the blood product should
raise suspicion that the unit is contaminated.30-3!

Intrinsic RBC Membrane Defects
and Deformability

The ability of the RBC to deform is a very
important requirement for these cells to negotiate
narrow capillaries in vivo. However, a decrease in
deformability or membrane defect may play a sig-
nificant role in the spontaneous or storage-induced
hemolysis.32-44 Examples of conditions in which a
decrease in deformability plays a role in hemolysis
include hereditary spherocytosis and the closely
related elliptocytosis.*>46 RBCs from blood donors
with glucose-6-phosphate dehydrogenase defi-
ciency, sickle cell anemia, sickle trait, or other
forms of hemoglobinopathies possess abnormal
membrane defects that may result in hemoly-
5i$.36:37-40 RBCs from uremic and diabetic patients
have poor deformability, rendering them more sus-
ceptible to mechanical damage.*”4* RBC deform-
ability is also affected by internal viscosity as in
sickle cell disease and hemoglobin C disease and
to a limited extent by properties of the membrane
as in thalassemia.37-40

Temperature

The temperature of the blood and component
during storage, at filtration, during filtration, or
processing-is a very important factor in hemolysis.
The temperature greatly affects membrane deform-
ability59-56 and, therefore, the stability of the mem-
brane during processing. RBCs can be lysed by
accidental freezing, if, for example, the blood is
stored in a refrigerator in which the temperature is
not properly controlled or placed in a freezer with-
out a cryoprotective agent. RBCs are damaged if
warmed to a temperature of 40°C.3* Therefore,
excessive heat from a heat sealer that is used to
make sample tube segments may result in thermal
damage. However, the thermo-sensitivity or tem-
perature at which RBCs are damaged may be sig-
nificantly reduced in some individuals.>¢ Such
thermally damaged RBCs may be broken down
during processing, centrifugation, and separation
of the blood units into different components. In
addition, extreme cold conditions or placement of
the blood bags at temperature below 1°C may
result in hemolysis either during filtration with
leukocyte reduction filters or during mixing and
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processing of the blood units before filtration.
Blood can also be frozen inadvertently during ship-
ping. Blood components must be transported in a
manner that will ensure maintenance of tempera-
ture of 1°C to 10°C.57 Therefore, the presence of
an abnormal level of free hemoglobin in the super-
natant plasma from the donor blood may occur as
a result of damage by improper temperature during
shipping,* storage, or mishandling at the time of
blood donation.

Osmotic (Hypotonic and Hypertonic)
and pH Changes

Sudden exposure of RBCs to hypotonic or hy-
pertonic solutions, to extremes of pH changes, to
anticoagulants, and to additive solufions in the
blood storage bags may result in either damage or
lysis of the more fragile populations of RBCs.58-62
The threshold at which RBCs are damaged when
suspended in hypotonic or hypertonic solutions
may be lowered by changes in temperature of the
suspending media.5839

Blood Age and Storage Duration

Blood donations for transfusion are routinely
stored for 35 to 42 days, depending on the com-
position of the anticoagulant and preservative so-
lutions. Previous reports on the effects of blood
storage have shown significant alteration in RBC
membrane integrity and flow properties and signif-
icant increase in the levels of free hemoglobin.63-65
Studies conducted by various investigators to
quantify the levels of free-plasma hemoglobin in
packed blood cells during storage showed signifi-
cant increase in free hemoglobin.83-65 A typical

2-day-old unit of unfiltered packed RBC in Adsol®
additive solution (Baxter Health Care Corporation, '

Fenwal Division, Deerfield, IL) has a free plasma
hemoglobin concentration of 17.4 mg/dL (range,
3.7 to 45.5 mg/dL). These levels appear as straw-
colored plasma. At 26 days of storage, an unfil-
tered unit of packed RBC has a plasma hemoglobin
level of 90.2 mg/dL (range, 46.5 to 151.5 mg/dL).
Finally at 40 days of storage, the typical plasma
concentration for unfiltered RBCs is about 193.0
mg/dL (range, 49.0 to 413.9 mg/dL). These levels
of hemoglobin at day 40 of storage appear straw
colored to slightly red at the low end and visibly
red at the upper end of the concentration range (Fig
1). Hogman et al'® reported that the type of storage
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containers used can significantly affect RBC he-
molysis during storage. They showed that unfil-
tered RBC units that are stored for up to 42 days in
PVC containers plasticized with BTHC had mean
supernatant hemoglobin of 830 mg/dL (2.5% he-
molysis) with an upper limit of 1470 mg/dL (4.5%
hemolysis).!0

Presence of Leukocytes

The presence of leukocytes in unfiltered RBC
units may also contribute significantly to the in-
crease in hemolysis during storage.566® During
storage, leukocytes break down and release a num-
ber of chemicals and enzymes such as hydrogen
peroxide and proteases. Proteases released by leu-
kocytes during storage have been reported to cause
RBC lysis during storage and are detrimental to
their metabolism and viability.56.68 These detri-
mental effects of leukocytes can be reduced or
abolished by removal of leukocytes with leuko-
cyte-reduction filters.58

Drug-Induced Hemolysis

Certain drugs when taken in high concentrations
by blood donors before donation may cause RBC
lysis through osmotic, oxidative, or immune-medi-
ated mechanisms. Examples of such drugs are pen-
icillin, vitamin C, quinidine, and alpha methyl-
dopa. Blood donors using these types of drugs are
not excluded from donating blood. Therefore, it
might be useful to review donor history in cases of
red celi hemolysis. Many drugs can cause lysis of
red cells in a patient with glucose-6-phosphate-
dehydrogenase (G6PD) deficiency and even in nor-
mal healthy blood donors if administered in higher
than normal doses.”0-78

Irradiation of Packed RBCs

Irradiation of whole blood and cellular compo-
nents is currently the only accepted methodology
to prevent transfusion-associated graft-versus-host
disease (TA-GVHD).” However, several investi-
gators have reported significant changes in RBC
membrane integrity after gamma irradiation as
shown by increase in osmotic fragility, cell lysis,
potassium leakage, and reduction in 24-hour, in
vivo survival 8081 Whole blood and RBC units that
are gamma irradiated are more likely to lyse and
release hemoglobin either during filtration or dur-
ing the preparative procedures to obtain the RBC
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Fig 1. Levels of free hemo-
globin in RBC concentrates in
AS-1 additive solution at differ-
ent storage durations. Each data 0
point represents the mean + SD
of 6 to 14 samples.
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component. Other forms of irradiation such as the
use of ultraviolet light (UV-A, UV-B, and UV-C)
that are used for pathogen inactivation in blood and
blood components may also cause extensive dam-
age to RBCs.32:83

Complement Activation and Platelet Activation

There are reports in the literature that the acti-
vation of platelets or leukocytes may lead to the
release of chemicals that may damage RBCs to
make them susceptible to lysis during storage or
further manipulation or handling. In addition, ac-
tivation of complement proteins in the blood may
also result in significant RBC damage.8+-%7

Biological Variations and Hemolytic Tendencies

There are also some situations in which the
cause of hemolysis could not be ascribed to any of
the factors described previously. There is recogni-
tion that blood samples from different normal
healthy blood donors can show different hemolytic
tendencies.®® Hemolysis rates also vary with the
time at which the blood is collected from the
donor. For example, blood samples that are with-

Storage Age of RBC (Days)

drawn from donors after meals are known to be
more susceptible to hemolysis than samples taken
after a fast.®8

EFFECTS OF FILTRATION ON RBC
HEMOLYSIS

Leukocyte Reduction With Filters

The preceding discussions show that there are
several factors that may cause RBCs to lyse that
are unrelated to filtration. Published data®®%° and
results from our studies®! show that Pall leukocyte
reduction filters when used according to the man-
ufacturer’s instructions do not cause RBC hemo-
lysis above the most stringent regulatory standard
of 0.8% hemolysis.®? On the contrary, the presence
of leukocytes in unfiltered red cell units has been
suggested to contribute significantly to an increase
in RBC hemolysis during storage.6-6° During stor-
age, leukocyte breakdown is assoctiated with the
release of a number of chemicals and enzymes
such as hydrogen peroxide and proteases.®>%° Pro-
teases that are released by leukocytes during stor-
age have been reported to cause red cell lysis
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during storage.®*-°5 Reports from several investi-
gators indicate that the prestorage reduction of
leukocytes in RBC concentrates significantly im-
proves the storage characteristics including signif-
icant reduction in the hemolysis when compared
with control unfiltered RBC units.96-%8 In a com-
prehensive crossover study, 4 clinical research cen-
ters investigated the effects of filtration on hemo-
lysis.®! For the study, 40 volunteers donated blood
on 2 different occasions. The units were processed
after 6 to 8 hours at either room temperature or
4°C. The results shown in figure 2 show significant
(P < .0001) reduction in storage hemolysis of the
Pall Leukotrap RC filtered RBC units when com-
pared with control unfiltered units at the end of a
42-day storage period. Similar studieg have been
performed by other investigators with whole blood
and packed RBC units.?¢-%8 The results from these
studies confirmed our observation of significant
reduction in hemolysis of filtered units compared
with control unfiltered blood.

Filtration of RBC at Different Storage Ages

A series of experiments were also performed to
determine the effects of filtration on hemolysis
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associated with the duration of RBC storage. In
these experiments, different ages of RBCs in AS-1
additive solutions with a mean heratocrit of 46%
were filtered through Pall BPF4® leukocyte-reduc-
tion filter (Pall Corporation, East Hills, NY) ac-
cording to manufacturer’s instructions for use.
Sampling was done aseptically through one of the
inlet ports on the storage bags. The results showed
that during storage hemolysis rates increased
steadily with time in both filtered and unfiltered
units in agreement with previous reports (Fig 3).
Although the levels of free hemoglobin in filtered
units were slightly higher than in 2-day-old unfil-
tered RBC units (Fig 4), the hemolysis levels were
still well below 1% or 0.8% levels for USA-li-
censed additive solutions and European guidelines,
respectively.®>9° Figures 3 and 4 show the levels of
hemolysis in packed RBC units in AS-1 additive
solutions at different ages in unfiltered and Pall
BPF4 filtered units. The data in figure 3 show that
leukocyte filtration of RBC concentrates protects
the cells from the leukocyte-induced hemolysis
and maintain the levels of hemolysis below 1%
during storage. A recent study by Gammon et al*°
confirmed these results and indicated that the lev-

Fig 2. Effects of prestorage
removal of leukocytes on RBC
hemolysis. Leukocytes were re-
moved from the RBC concen-
trates on day 0 and then stored
for 42 days in AS-2 additive so-
lution at 4°C. Each data point
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Fig 3. RBC hemolysis during
extended storage period. RBC
concentrates in AS-1 additive
solution were filtered on day 5
and then stored at 4°C for an
additional 35 days. Each data
point represents the mean + SD
of 6 samples. (@, filtered unit; O,
control unfiltered RBC.)
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Fig 4. Effects of RBC age on
hemolysis. RBG in AS-2 additive
solutions at different storage
ages were filtered at room tem-
perature with Pall BPF4 leuko-
cyte-reduction filters. Each data
point represents the mean + SD
of 6 samples. ({J, control unfil-
tered sample; N, filtered units.)
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Fig 5. Effects of RBC age and
filtration on hemolysis. At each
of the 6 weeks of the shelf life of
an RBC concentrate, 10 units
were filtered with a Pall BPF4™
or a Purecell RCQ™ (Pali Corpo-
ration, East Hills, NY) leukocyte
reduction filter at room temper-
ature. Each data point repre-
sents the mean post-filtration
plasma hemoglobin minus the
prefiltration plasma hemoglobin
concentration in RBC units that
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els of hemolysis in filtered units are significantty
below the most stringent regulatory guidelines
(Fig 5).

REGULATORY GUIDELINES AND CLINICAL
IMPLICATIONS OF HEMOLYSIS

Acceptable levels of plasma-free hemoglobin
have not been established in the United States
except for deglycerolized RBCs.?9 Grossly visible
pink discoloration of plasma or red eell suspending
medium occurs with free hemoglobin levels as low
as 25 mg/dL (approximately equivalent to 0.09%
hemolysis at 45% hematocrit and 16 g/dL of total
hemoglobin in RBCs).1% When the hemoglobin
concentration is 100 mg/dL, the suspension is
clearly red in color. Figure 7 shows the color of the
supernatant fluid at different levels of hemolysis
and free hemoglobin concentrations for RBCs in
plasma. Hemolysis is a very important parameter
for assessing the quality of stored RBCs. Free
hemoglobin in the body dissociates. into o dimers,
which have to be bound to haptoglobin. to be re-
moved by the reticuloendothelial system. The nor-
mal haptoglobin level in adult human is 30 to 200.
mg/dL.19! Each melecule of haptoglobin, a dimeric
glycoprotein, can bind 2 hemoglobin dimers or

were filtered after 1 to 6 weeks
of storage. 3¢ (O, Pall BPF4™; @,
Pall RCQ™.)

approximately 1 gram per liter of plasma. Thus, in
an adult, about 3 grams of free hemoglobin (or
approximately 10 units of RBCs each with 0.5%
hemolysis) can be transfused to a patient without
the occurrence of hemoglobimuria. Hemoglobin
does not characteristically appear in the urine until
plasma levels exceed 100 mg/dL. (1 g/L)!%0 In
practice, tolerance is greater because of the rapid
formation and the metabolic turnover of haptoglo-
bin. The US Food and Drug Administration (FDA)
has not established an official guideline for accept-
able level of hemolysis in blood products for trans-
fusion. However, the FDA has recommended a
maximum of 1% hemolysis for deglycerolized
RBCs and has approved and licensed additive so-
Iutions for long-term storage of packed RBC units,
with Iess than 1% hemolysis at the end of the
storage period.®® In centrast to the FDA, the offi-
cial guideline in Europe for hemolysis in RBC
products for transfusion is 0.8%.92

Although, there are ne extensive clinical trials
on the toxicity of free hemoglobin solutions in
buman beings, autologous hemotyzed blood has
been infused into humans for various experimental
investigations. Spector and Crosby!%2 infused nor-
mal human volunteers with hemolyzed bload to
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induce hemoglobinemia. The volunteers were
found to be asymptomatic after 540 mg/dL bolus
injection of free hemoglobin followed by a 5-hour
maintenance infusion of 240 mg/dL. Furthermore,
the induction of moderate hemoglobinemia in nor-
mal subjects did not result in the development of
disseminated intravascular coagulation.192 Various
other studies have reported higher levels of plasma
hemoglobin levels in transfused blood. Aaron et
al'9 reported transfusion of unwashed salvaged
blood with a mean free-hemoglobin level and
plasmia hemoglobin levels of 1000 * 625 mg/dL
(about 3% hemolysis) in patients undergoing ar-
throscopic surgery. Their study confirms that such
levels of plasma hemoglobin are tolerated without
clinical sequelae.193 This observation is true for
normovolumic subjects and may not be true for
other types of patients (ie, those with hypovole-
mia).

INVESTIGATION OF HEMOLYSIS

Hemolysis is usually recognized by free hemo-
globin in the RBC-suspending media. The pres-
ence of pink discoloration in the suspending media
either in the prefiltration or post-filtration RBC unit
or blood should prompt an immediate investigation
for the factots that mediate the break down of the
cells. All the various stages in the manufacturing of
the leukocyte-reduced RBC products are outlined
in figure 6, which may be useful in the investiga-
tion to identify the source of RBC damage. The
first test is to ensure that the donor RBCs have not
been damaged before filtration by any one of the
factors discussed in the preceding section. For ex-
ample, exposure to extremes of heat or cold, ob-
taining blood under excessive pressure through a
too-small needle, or contact with incompatible
blood containers may cause RBC damage and re-
lease of hemoglobin before subsequent filtration
with a leukocyte-reduction filter or processing by
using centrifugation procedures. Visual examina-
tion of the supernatant of the blood remaining in
the blood bag or in the administration tubing
against a white background may reveal the pres-
ence of pink discoloration as result of RBC lysis or
damage. An RBC unit that had been inadvertently
lysed by exposure to excessive cold has a purple
appearance that could serve as a warning that he-
molysis has occurred.®”:88 Although visual obser-
vation is adequate for identification of hemolyzed
units at plasma hemoglobin level of 25 mg/dL

53

when pink discoloration is apparent to the unaided
eye, the level of free hemoglobin must be accu-
rately measured with one of the methods described
later for proper quality control and for establishing
rejection criteria for RBC units. for transfusion
purposes. Different levels of supernatant hemoglo-
bin in plasma are shown in figure 7 for comparison.
Note that at 40 mg/dL, which is still well below
1%, the plasma appears visibly red in color.

Investigating post-filtration (leukocyte reduc-
tion) hemolysis requires detailed inquiry into the
circumstances surrounding the donation of the
blood, preparation of the RBCs, and the filtration
process. Some examples of determinants of hemo-
lysis associated with filtration that one must look
for include the following:

1. Forcing the RBCs or whole blood through
the filter to achieve adequate priming of the
filter material before filtration

2. Stripping of the administration tubing to
prepare sample tube segments for analysis

3. Trapped air pockets either in the filter or
foam generated during the mixing of the
blood unit

4. Extremes of temperature for filtration

5. Deviation from manufacturer’s instruction
for use of the leukocyte reduction or filtra-
tion system

6. Irradiation of RBC units prior to filtration

However, to determine whether the levels of
hemolysis in the units is above 1%, it is suggested
that appropriate analytical methods be used to
quantify the levels of hemoglobin in the units. This
will avoid unnecessary rejection of units that are
within the,acceptable level that is recognized by
regulatory agencies for the licensure of additive
solutions for the long-term storage of RBCs.

GUIDELINES FOR PREVE'NTION
OF HEMOLYSIS DURING FILTRATION

The following proposed guidelines are based on
the available literatures and may help ieduce the
potential for hemolysis during leukocyte: filtration
or blpood processing. Note that many of the findings
relate to generalized standard or “good” blood
management techniques.

1. Follow manufacturer’s 1nstruct10ns for use
of leukocyte filtration -devices. Adequate
training of laboratory technologlsts is im-
portant. Those processing blood units must
be properly trained and regularly monitored
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Fig 6. Fiow diagram of the various stages in the production of leukocyte-reduced RBC units. Evaluation of the processes at the
different stages will help to identify the source of any RBC damage and allow the appropriate corrective action to be implemented.

to ensure that manufacturers instructions for
use of RBC processing equipment are fol-

lowed.

2. Whole blood must be anticoagulated with

the recommended volume of anticoagulant.
Avoid under filling or over filling the pri-
mary blood collection bag with whole
blood. RBC units must be stored in FDA-
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Fig 7. Different concentra-
tions of free hemoglobin in su-
pernatant plasma. At 40 mg/dL,
which is still below the 1% he-
molysis level, the discoloration
of the supernatant plasma is
very visible.

approved additive solutions at the appropri-
ate composition of chemical components,
osmolality, and pH.

3. Before the filtration of an RBC unit, check
the supernatant for free hemoglobin against
a color comparator. If the reading on the
color comparator is 25 mg/dL or greater,
extreme care must be used in processing the
unit. Avoid repetitive shaking, squeezing, or
agitation of blood storage bags containing
RBC units in additive solutions or whole
blood.

4. Ensure that all the tubing attachments be-
tween the blood bag and the filter are fully
extended. Do not filter blood or red cell
units if the tubing or connections between
the filter and the blood bag are kinked or
partially occluded.

5. Do not filter blood against partially opened
transfer leg closure or partially clamped tub-
ing between filter and RBC bag.

6. Occasionally check the osmolality and pH
of RBC storage solutions to ensure that
these parameters have not changed either
during storage of the blood collection set or
during shipping.

7. RBC units or whole blood that are older
than 1 day old must be handled carefully
during processing. For example 2 end-over-
end rotations of the bag containing 7- to
42-day-old RBC units is adequate to ensure
adequate mixing before filtration.

10.

1.

12.

14.

15.
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. Do not store RBC units close to the “air

vent” in the cold room where the tempera-
ture may be lower than the recommended
temperature of 1° to 6°C.

RBC or whole blood units must be trans-
ported in an appropriate container that
maintains the temperatures recommended
by the prevailing standard.

Avoid the trapping of air bubbles into the
filtration system during the leukocyte reduc-
tion process.

Avoid the use of force to push the RBC or
whole blood unit through the leukocyte re-
duction filter during the initial priming. Use
glavity force to prime the filter, unless it is
not recommended by the manufacturer of
the leukocyte reduction system.*

Avoid the use of high centrifugation speeds
(greater than 5000 g for 5 minutes) to pre-
pare RBC concentrates from whole blood.
Resuspension of tightly packed RBCs in
additive solutions must be done very care-
fully to avoid damage.

. Filter the RBC unit with leukogyte reduc-

tion filter before gamma irradiation.

Avoid transferring RBC uiits into blood
bags that may contain hypo- or hypertonic
fluid, which may have occurred as a result
of a process that was used to sterilize the
blood collection bags.

The blood unit must be fully anticoagulated
before processing. Avoid the use of blood
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units with visible clots as a result of inade-
quate anticoagulation.

METHODS FOR THE DETERMINATION
OF PLASMA HEMOGLOBIN

Determination of free hemoglobin is of great
value in.the assessment of the extent of hemolysis
in different leukocyte reduced and nonleukocyte-
reduced blood and blood components. In most
blood banks and hospitals, visual inspection of the
sample tube segments that are attached to the blood
bags is used as a quick and easy method to detect
hemolysis in the blood units. However, such visual
inspection methods are inaccurate measures of he-
molysis and different results are obtained between
the tube segments and the blood samples in the
blood bags.!04.105 In addition to differénces in the
ratio of plastic surface to blood volume between
the blood bag and the attached tube segments, it
should be noted that the plastic used for the con-
struction of blood storage bags may differ from
those used for tubing. Thus, surface contact and the
passage of gases needed for proper respiration of
RBCs may be different in the tubing and the stor-
age bags.

Quantitative Methods

The best method of assessing the levels of he-
molysis in blood products is to use a validated
quantitative assay. Different methods have been
developed for this purpose and most procedures
are based on the characteristic absorption spectra
of hemoglobin.16-116 These include spectropho-
tometry at discrete wavelengths,!97-199 gpectral
wavelength scan analysis,!1° and derivative spec-
trophotometry.!'1-112 Plasma hemoglobin assays
can classified into! direct optical techniques in
which quantitation is based on oxyhemoglobin’s
absorbance peaks at 415, 541, or 576 nm. The
direct spectrophotometric scanning of plasma sam-
ples is strongly subject to interference by back-
ground levels of elevated of bilirubin, plasma
proteins, albumin, lipids, and other absorbing pig-
ments. The other quantitative methods are chemi-
cal techniques in which all forms of hemoglobin
(except sulhemoglobin) form a colored reaction
product, cyanmethemoglobin, when mixed with
chemicals such as potassium ferricyanide or tetra-
methylbenzidine. The International Committee for
Standardisation in Haematology has recommended
the cyanmethemoglobin method as the standard
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reference method for whole blood.!'” Although
used by few organizations, the direct optical spec-
trophometric methods are safer, easier, and more
precise and accurate than the chemical addition
methods used to measure plasma hemoglobin con-
centration. At Pall Corporation, we use the Cripps
spectrophotometric method in which oxyhemoglo-
bin in undiluted plasma sample is quantified by
using a 3 wavelength (560, 576, and 592 nm) Allen
baseline correction method.!!4 In this method, the
partial absorbance of oxyhemoglobin at 576 nm is
calculated relative to linear baseline absorbance at
560 and 592 nm. The advantage of the technique is
that substances that interfere with hemoglobin as-
say, such as bilirubin, are corrected for using ab-
sorbance values at wavelengths on both sides of
the peak.

Calculation of Percent Hemolysis

The concentration of free hemoglobin depends
on the number of disintegrated RBCs and the vol-
ume of fluid. The same percentage hemolysis may
thus give a 4- to 6-fold higher concentration of
hemoglobin in a red cell concentrate than in whole
blood.!17 Therefore, the degree of hemolysis is
often described as the percent of free hemoglobin
in relation to the total. Note that it is essential to
correct for the hematocrit to avoid overestimation
of the percent hemolysis in a product. The formula
for calculating the percent hemolysis is described
below with appropriate examples given in Table 1.

Percent Hemolysis (%) =
(100 ~ Hematocrit) X Free Hemoglobin
in Plasma or Suspending Medium

Total Hemoglobin

CONCLUSIONS

RBCs outside the body are challenged by pro-
cessing and storage conditions. With no leukocyte
reduction filter in use at anytime in their storage
life, hemolysis still occurs as units age. Clinically,
transfusion of 42-day-old RBC units with or with-
out filtration has been in use for decades without
any clinical adverse effects, This report shows that
there are various nonfiltration-related factors that
may contribute to the occurrence of hemolysis in
blood units or packed RBCs. To prevent the oc-
currence of hemolysis, these factors must be con-
sidered carefully before the processing of blood
with leukocyte reduction filters.



RED BLOOD CELL HEMOLYSIS

57

Table 1. Examples of Calculation of Percent Hemolysis in Samples With Different Hematocrits

Total Hemolysis Not Hemolysis

Hemoglobin Free Hemoglobin in Corrected for Corrected for

Examples Hematoarit (%) {mg/dL) Plasma {mg/dL} Hematocrit (%) Hematocrit (%)
1 30 12,000 120 1.0 0.70
2 40 16,000 120 0.75 0.45
3 50 20,000 120 0.60 0.30
4 60 24,000 120 0.50 0.20
5 70 28,000 120 0.43 0.13

The highest level of free hemoglobin in either
filtered or nonfiltered RBCs at the end of 42-day
storage is less than 0.8% hemolysis, which is the
most stringent guideline available.”? At free-plasma
hemoglobin levels of 0.8% and 1.0% hemolysis cor-
responding to 233 and 291 mg/dL, respectively, (cal-
culation based on the assumption that whole blood
has 45% hematocrit and total hemoglobin of 16 g/dL)
the supernatant plasma is very red in color and can

easily be detected by the naked eye. Although the
supernatant is very red, the 1% level of free-plasma
hemoglobin is acceptable and the unit can be trans-
fused without clinical sequelae.

Many publications!>:16:64.80.89.90 yging leukocyte-
reduction filters show that the levels of free-plasma
hemoglobin in filtered blood products are well
below the most stringent regulatory standard of
0.8% hemolysis.
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