mPath ${ }^{\top M}$ Control Tower and mPath Link Software User Manual

Contents

1. Safety Sym bols and Statements 6
1.1 Types of Safety Symbols 6
1.2 Safety Messages and Warnings 7
1.3 Danger Levels7
2. System Overview 8
2.1 Introduction 8
3. Site Requirements 9
3.1 Responsibilities 9
3.2 Size and Weight of Equipment 9
3.3 Space Requirements for Equipment Operation 9
3.4 Power Requirements 10
3.5 Gases 11
3.6 Environment. 12
4. Unpacking and Installing 12
4.1 Packaging Details 12
4.2 Installation 13
4.3 Hardware Ove rview 14
5. Connecting the mPath Control Tower 18
5.1 Communications 18
5.2 Gas Connections 20
5.3 Rear Panel Unit Connections 21
5.4 Side Panel Connections 22
5.5 Power on the Bioreactor Control Tower 22
5.6 Enabling Network Communications 23
6. Unit Defaults 23
6.1 Configuration of Defaults 23
6.1.1 Import/Export 24
6.1.2 Unit Default Screen Details 24
6.1.3 I/O Values 26
7. Creating a Control tower and Unit 28
7.1 Adding a Control tower 28
7.2 Creating a New Control tower 29
7.3 Creating a Unit 30
7.4 Creating User Configurable I/O 33
8. Editing, Viewing and Deleting Control towers and Units 35
8.1 Editing a Previously Created Control tower 35
8.2 Removing a Control tower 35
8.3 Viewing a Unit 35
8.4 Deleting a Unit 35
9. User Interface Interaction 36
9.1 User Interface Overview 36
9.2 System/Unit Level View 37
9.3 User Management 38
9.3.1 Adding/Deleting Users 39
9.3.2 Editing existing users 44
9.4 Quick Start Batch - from a Pall Default Recipe 46
9.5 Running a batch from a Pall Default Recipe 46
10. Operation 46
10.1 Home Screen 46
10.1.1 System Level Home Screen 46
10.1.2 Unit Level Home Screen 47
10.2 Recipes 48
10.2. 1 Creating a New Recipe 48
10.2.2 Control Loop Configuration 49
10.2.3 Phases 50
10.2.4 Adding a phase 51
10.2.5 Trend Configuration 53
10.2.6 Summary 54
10.3 Editing and Duplicating a Previously Created Recipe 55
10.3.1 Removing or Retiring a Previously Created Recipe 56
10.3.2 Search Feature within Recipe Manager 56
10.4 Starting a Batch 57
10.4.1 Scheduling a Batch Linked to a Recipe 57
10.4.2 Editing a Scheduled Experiment / Batch 58
10.4.3 Deleting a Scheduled Batch 58
10.4.4 Starting a Batch 59
10.5 Calibration 59
10.5.1 Calibrating Pre Sens pH and DO Sensors 60
10.5.2 Calibrating Electrochemical pH and DO Sensors 61
10.5.3 Calibrating Pumps 64
10.5.4 Calibrating Hanging Load Cells 65
10.6 Monitoring a Running Batch 67
10.6.1 Overview Screen - Process View 67
10.6.2 Overview Screen - Tabular View 69
10.6.3 Overview Screen - Control Loop View 69
10.6.4 Faceplates 70
10.6.5 Typical Parameters 70
10.6.6 Gas Handing Face plate 71
10.6.6.1 Primary Gas Faceplate 72
10.6.6.2 Secondary Faceplate 73
10.6.6.3 Batch Screen 74
11. Detailed Configuration and Batch Management 75
11.1 Control Loop Configuration 75
11.1. \quad Single Parameter Control 76
11.1.2 Multiple Parameter Control 77
11.1.3 DO and pH Control Philoso phy 79
12. Alarms 80
12.1 LED Light Ring 80
12.2 Status Bar 80
12.3 Alarm Screen De scri ption 81
12.4 Alarm Configuration 81
12.4.1 Settings Tab 81
12.4.2 Faceplate 82
12.5 System Alarms 83
12.6 Disabling Alarms on Batch Start 83
13. Trends 83
13.1 Active and Batch 83
13.2 Trend settings 86
13.2.1 Axes 86
13.2.2 Pens 87
13.2.3 Plots 88
13.2.4 Columns 89
13.3 Batch Com pare 90
14. Events. 92
14.1 Export 93
15. Reports 93
16. View 93
15.2 Export 94
17. Diagnostics and Troubleshooting 95
16.1 Diagnostics 95
16.2 Trouble Shooting 95
18. mPath Link Mobile Application 96
17.1 Instal| 96
17.1.1 Application Installation 96
17.2 User Interface 101
17.2. 1 Overview 102
17.2.2 Process 102
17.2.3 Batch Schedule 104
17.2.4 Alarms 104
19. Cleaning and Maintenance 105
18.1 Cleaning 105
18.2 Preventive Maintenance 105
18.3 Critical Spare Parts 106
20. End of Life Disposal 106
21. Technical Specifications Summary 107
20.1 mPath Control Tower. 107
20.2 mPath Link Server. 108
22. Technical Assistance and Important Contact Details 109
23. Appendix A: Abbreviations 110
24. Appendix B: Connecting to Additional Networked Computers and Tablets. 11
25. Appendix C: I/O List 112
26. Appendix D: User Management (Default List) 114
27. Appendix E: Alarms 115

1. Safety Symbols and Statements

1.1 Types of Safety Symbols

All safety symbols: warning, prohibition, mandatory and Globally Harmonized System (GHS) can / will be accompanied by additional text and signs to explain the reason for the warning, explain the nature of the prohibition, and explain the reason for the action.

Table 1

ISO 7010 safety signs and symbols
Color

1.2 Safety Messages and Warnings

Table 2

Safety signs and symbols within this document
Safety is the responsibility of the individual installing, using, or maintaining the equipment and any others who may be involved in the operation. It is important that the safety instructions are read and followed.

1.3 Danger Levels

The following danger levels are used in safety messages throughout this manual.
Table 3
Danger levels within this document

Danger:		Will lead to severe injuries or death
Warning:		May lead to severe injuries or death
Alert:		

2. System Overview

2.1 Introduction

Your mPath unit control tower has been designed to be used with Pall unit products. It is intended for use in research \& development, process development and small-scale GMP manufacturing.

The mPath control tower system is capable of supporting cGMP cell culture processes on the iCELLis® Nano unit, and Xpansion $®$ multiplate unit and Allegro ${ }^{\top M}$ XRS 25 single-use unit systems. The mPath control tower also includes four extra IO (Input / Output) ports to allow user configuration.

The mPath control tower does not have a user interface (UI) present on the casing. It has been designed to work with mPath Link, a supervisory control, and data acquisition (SCADA) platform where the user can remotely view and control their unit from a network enabled device. Access to full features of mPath Link is dependent on the IT environment in which the software is installed. For further details, consult the Pall IT Technical Advisory Note reference USD 3222.
mPath Link UI and SCADA software is delivered as standard on a mPath Link server (part numbers in Table 4) which is configured as a server. All required software is pre-installed with default recipes to aid the user in a quick start scenario.

Table 4
mPath Link Part Numbers

Part Number
MPATHLINKV2 - LT
MPATHLINKV2
MPATHLINKV2-U-LT
MPATHLINKV2-LTSW
MPATHLINKV2-SW

Description
mPath Link server lite - single session \& device
mPath Link server full - unlimited sessions \& devices
mPath Link server lite - single session \& device (existing Pall Link users transferring to mPath Link) mPath Link server full - unlimited sessions \& devices (existing Pall Link users transferring to mPath Link) mPath Link lite - single session \& device (software only no server)

The design of the software is such that up to 10 control towers and user interfaces can be supported from one server. Additional units may reduce performance. To support larger installs a more powerful server or multiple servers may be required.

The software is recipe focused allowing the user to create, save, edit, delete, archive and duplicate recipes. The recipe then can be scheduled against an integrated calendar
within the software to allow lab managers to arrange unit availability and plan
resource requirements.
The mPath control tower can provide two mixed gas supplies - primary and secondary - to the unit. Each mixture may be generated from four compressed gases: carbon dioxide, nitrogen, oxygen, and air which are supplied to the tower.

Primary is typically a mix of carbon dioxide, oxygen and air or nitrogen (air and nitrogen are interchangeable without an impact on calibration). Secondary is typically a mix of carbon dioxide, air, or nitrogen.

An additional feature on the mPath control tower is a rapid inflate option which allows the operator to quickly inflate their biocontainer with compressed air.

The mPath control tower can be delivered with or without peristaltic pumps depending on the unit being connected to the tower. If the pump option is chosen, three variable speed Watson Marlow 314D pump heads, accommodating tubing with bore sizes of up to 8 mm are fitted as standard.

3. Site Requirements

3.1 Responsibilities

A Pall engineer will be responsible for installing and commissioning the hardware to ensure that it is properly installed and operational. The user is responsible for ensuring that the workspace is prepared in advance to allow the Pall engineer to carry out the installation efficiently.

The installation of the hardware cannot begin until the checklist has been completed and returned to the Pall engineer. The site preparation checklist must be completed as accurately as possible to help minimize installation time.

A user who has been designated to be responsible for the normal use and upkeep of the hardware must be present during the installation. This allows the user to be trained on the basic hardware operation.

3.2 Size and Weight of Equipment

Table 5
Size and weight of the mPath equipment.
Dimensions (W X D X H)

Weight
$230 \mathrm{~mm} \times 600 \mathrm{~mm} \times 450 \mathrm{~mm}$
($\mathrm{H}=590 \mathrm{~mm}$ with hangers attached) 20 kg

3.3 Space Requirements for Equipment Operation

The mPath unit control tower is intended for indoor use only. Choose an appropriate location to install the equipment taking into consideration the following:

- The equipment should be placed on a solid, level and even surface to minimize the risk of the equipment falling over.
- When using hanging load cells ensure control tower is placed on an even surface, which is not subject to vibration.
- Ensure the space around the equipment is clear to allow ventilation through the underside and rear of the equipment.
- No exposure to direct sunlight.
- Not positioned near any water sources or heat sources. In the event of a major liquid spillage in or near the unit control tower, isolate the system from the electricity supply.
- Ensure a well illuminated and well-ventilated working environment.
- The equipment will require access to the rear and left side panels during installation and setup.
- Access to the left, front and right panels will be required in normal use.
- The equipment needs to be powered from an AC power supply.
- The AC power supply should provide a safety earth connection.
- The AC switch on the rear of the equipment should be easily accessible without having to move the equipment.

3.4 Power Requirements

4

- When connecting the instrument, check the electrical cable for damage. If the cable is undamaged then first connect the cable to the instrument, and then connect the cable to the electricity supply.
- The mPath unit control tower should only be connected to an AC current limited (16A) supply that has protective ground using the IEC power supply cord provided. Do not replace the detachable power supply cord with an inadequately rated cord. Doing so could compromise safety.
- The detachable power supply cord is used as an electrical disconnect device. Do not position the equipment so that it is difficult to remove the supply cord from the AC supply.
- The equipment has an AC power switch on the rear. The power switch has two positions indicated by graphical symbols:
. \quad On - equipment powered \bigcirc Off - equipment powered off
- The AC power switch is illuminated when in the on position.
- Avoid contact with water and other solvents.
- In the event of a major liquid spillage in or near to the unit control tower, isolate the unit from the electricity supply.
- The equipment contains no internal user-serviceable parts. Do not remove covers or attempt to repair the equipment. Doing so will void the warranty.
- Repairs must be undertaken by Pall authorized service personnel only. Faulty unqualified repair work may cause accidents or injury to the operator.
- Do not use extension cords.
- The plug must be disconnected from the power source before changing the fuse.
- The fuse in the AC power inlet must only be replaced with the type and rating marked on the equipment.
- This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC rules.

3.5 Gases

\triangle

- It is the user's responsibility to provide a clean, dry, oil free, analytical grade source of each compressed gas regulated from 2 (29 psi) to 6 bar (87 psi) or below as mass flow control towers are sensitive to dirt and pressure spikes.
- Gases from local compressors or generators must be filtered and dried.
- It is recommended that Pall sub-micron filters are installed in each gas line. Recommended: Pall Gaskleen ${ }^{\oplus}$ GLF6101FP4 filters.

(1)When using the stated filter, male $1 / 1 /$ in. NPT to 6 mm push to connect stubs are also required.

- The mPath bioreactor control tower is designed for use with and calibrated for the gases carbon dioxide, oxygen, nitrogen, and air at pressures between $2 \mathrm{bar}(29 \mathrm{psi})$ and $6 \mathrm{bar}(87 \mathrm{psi})$. Use caution when working with the gases and ensure all gas tubing is fully inserted into the push to connect fittings on the bioreactor control tower.
- The use of gases other than those listed above is not recommended.
- The maximum inlet pressure of 6 bar (87 psi) must not be exceeded.
- All pneumatic tubing used must be rated to withstand the gas pressures used (up to 6 bar / 87 psi).
- The operator should check the tubing and connectors for damage before each use.
- Ensure the environment in which the mPath bioreactor control tower is being operated has appropriate gas alarms enabled.

Table 6

Gas connections overview.

Gases	Mains Gas In	Gas Out / Delivery	Recommended Tubing for Connections
Air, oxygen, nitrogen, and carbon dioxide	Pneumatic push-fit connector (for each gas)	Quick connectors 6 mm	Pneumatic tubing 6 mm OD

The optional with PN CCTOOLKIT supplied by Pall includes tubing and tubing connectors to enable the easy installation of the hardware and connection of gas lines.

3.6 Environment

Alert
This equipment was designed for indoor use only (ambient temperatures of $+76^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$). It may occasionally be subjected to temperatures between $+5^{\circ} \mathrm{C}$ and $+40^{\circ} \mathrm{C}$ without degradation of its safety.

The mPath control system can be operated under the following ambie nt environmental condition:

- Indoor use only.
- Altitude up to 2000 m.
- \quad The ambient temperatures must be between $5^{\circ} \mathrm{C}\left(41^{\circ} \mathrm{F}\right)$ and $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$.
- Maximum relative humidity of 80% for temperatures up to $31^{\circ} \mathrm{C}$ decreasing linearly to 50% relative humidity at $40^{\circ} \mathrm{C}$.

Electrical supply voltage fluctuations allowable of up to $+/-10 \%$ of the nominal voltage.

4. Unpacking and Installing

4.1 Packaging Details

The mPath bioreactor control tower is supplied in packaging to help reduce the risk of damage to the equipment during transit. The equipment is heavy and suitable precautions should be taken when lifting or moving the packaged equipment to help prevent personal injury or damage to the equipment. It is recommended that the packaged equipment be lifted by two people.

Inspect the packaging for signs of damage. Place the packaging on a solid and even surface with the arrows pointing in the up direction. Open the packaging from the top. Before attempting to remove the equipment, check the internal packaging for signs of damage.

Carefully lift the equipment from the packaging and place it on a solid and even surface. Check the equipment for any signs of damage.

If the packaging or equipment is damaged in any way, contact Pall for advice.
Ensure the equipment $A C$ on/off switch on the rear panel is in the off position, and the switch on the AC power supply socket is off if one is fitted.

Ensure that the Emergency Stop button is not engaged by twisting it to the right-hand side.
Table 7
Packaging details.

Dimensions (Packaging)
$H=610 \mathrm{~mm}, \mathrm{~L}=699 \mathrm{~mm}, \mathrm{~W}=330 \mathrm{~mm}$

Weight

25 kg

4.2 Installation

1

- The mPath bioreactor control tower should be handled with care as appropriate for a sensitive electronic instrument.
- The mPath bioreactor control tower weighs 20 kg when fully assembled; care should be taken when lifting. Only lift or move the equipment using the rear hand hold at the bottom and lip at the top of the top face. It is recommended that the equipment be lifted or moved by two people.
- Before attempting to move the mPath bioreactor control tower, disconnect from power supply, disconnect gas lines, remove hanging biocontainers, remove cables connecting control tower and bioreactor as well as any tubing from peristaltic pumps.
- To connect the bioreactor control tower to a network, please refer to the Pall IT Technical Advisory Note reference USD 3222.
- A Pall service engineer will aid with the first installation of the bioreactor control tower. *Warranty may be void if installation is carried out without Pall specialist present.

4.3 Hardware Overview

Figure 1

Labelled overview of mPath control tower

No.

Item

Peristaltic pumps. Only on part numbers: MPATHBRXPS2P3

1

2
3

4 \qquad Emergency stop

5
Tablet dock

6 \qquad Connector panel

Description

Three variable speed Watson-Marlow * 314D pump heads are located on the front of the controltower. These pumps are designed to operate with tubing boresizes in the range 0.5 mm to 8 mm

Three LEDs provide the user with information on the status of the pumps
An illuminated ring is located on the front of the control tower to provide the user with general alarm status
An E-stop is located on the front of the control tower. This is an E-stop for the control tower only!
The user can set up recipes and monitor progress through a tablet computer or HDMI touchscreen that may be docked on top of the controltower. A charging point is available on the connector panel and an HDMI output on the rear of the instrument
The connector panel provides for a range of sensor inputs (both electrical and optical) and control outputs

Figure 2
Labelled overview of mPath control tower rear panel

No.	Item	Description
1	Ventilation exhaust	To allow air used for cooling to exit the mPath control tower
2	Ethernet	Network connection
3	HDMI	Monitor connection
4	USB ($\times 2$)	Keyboard and mouse connections
5	AC power on/ off switch	The equipment can be switched on/off using the AC power on/off switch on the rear panel
6	AC Inlet and fuse	Power to the equipment is provided through the AC inlet using one of the three supplied detachable power cords (UK, EU or US power plugs)
7	Ventilation inlet	To allow external air to be drawn into the mPath control tower for cooling
8	$\underline{\text { Product label }}$	Product and safety information
9	Bioreactor connections	Connectors that allow a variety of Pall range laboratory scale bioreactors to interface with the mPath control tower
10	Ground	For peripheral equipment requiring a ground connection
11	Gas inlets	Four 6 mm quick-fit connectors that can be connected to pressurised supplies of air, nitrogen, carbon dioxide and oxygen, 2 (29 psi) - 6 bar (87 psi) supply pressure.

Figure 3
Product safety label

Figure 4
mPath control tower left side panel

Item
1
2
3

4 \qquad $\underline{\text { Bioreactor control connections }}$

5 Bioreactor sensor connections

Description

The control tower provides two gas outlets (Primary and Secondary) which provide a controlled flow/mixture of the inlet gases:
Primary provides gas mixes of $\mathrm{CO}_{2}, \mathrm{Air} / \mathrm{N}_{2}, \mathrm{~N}_{2}$ and O_{2}
Secondary provides gas mixes of CO_{2} and $\mathrm{Air} / \mathrm{N}_{2}$
A USB charging port that can be used to charge a docked tablet is also provided (No data transfer capability)

The controltower provides four M12 A-coded 8-way female connectors that offer a range of I/O signals

Electrical connections that control bioreactor functions such as heaters and stirring systems
Mag Stirrer - 2mag* bioMIX drive stirrer connection
Filter Heater - M12, A-coded, 5-way, female connector, 0-24V
Peltier - controllable supply for Peltier heater/cooler or resistive heater - output is presented on an M12 T-coded
4 -way female connector, 0 to $\pm 21 \mathrm{~V}, 0$ to $\pm 4 \mathrm{~A}$.
Electrical and optical connections
pH and DO - electrochemical and fiber optic
CO_{2} - electrochemical
Load Cell - M12, A-coded, 5-way, female connector, 24 V supply, $1 \times 0-20 \mathrm{~mA}$ input.
Temperature - PT 100
Pressure - M12, A-coded, 5-way, female connector, 24 V supply, $1 \times 0-20 \mathrm{~mA}$ input or
$1 \times 0-10 \mathrm{~V}$ input
Biomass - M12, A-coded, 5-way, female connector, 0-20 mA.
Biomass - Aber • biomass Modbus communication

Figure 5
mPath control tower right side

No.	Item
1	Instrument feet
2	Maintenance access panel
3	Biocontainer weighing system

Description

The instrument is mounted on feet that elevate the instrument to allow access to all surfaces for cleaning and for convenience in routing control cables to bioreactor vessels placed on the opposite side of the control tower

Pall qualified service engineers can access the control tower through removable panels on both sides

The weighing system consists of load cells within the instrument and removable hangers that provide a method for monitoring the weight of up to 3 biocontainers maximum volume 2 liter per biocontainer hanger - maximum total volume 4.5 liters.

5. Connecting the mPath Control Tower

Alert
The power must be switched off prior to making connections between the mPath control tower and units.

5.1 Communications

Figure 6
Rear panel ethernet connection.

Depending on your choice of network communications determined from the Pall IT Technical Note reference USD 3222:

- Use the Ethernet port on the rear of the mPath control tower and connect it to the appropriate network point via a CAT6 Ethernet patch cable or directly connect to the mPath Link server as shown by the options above.
- Perform the same task with the mPath Link server. Connect CAT6 Ethernet patch cable to the Ethernet port located at the rear of the unit to the appropriate network point.

Figure 7
Network communication options.

From the instructions in the Pall IT Technical Advisory Note reference USD 3222, the Pall bioreactor installation specialist will use the IP address set by your IT department to configure the mPath bioreactor control tower.

The mPath Link server along with each bioreactor control tower require a unique static IP address when networked. All IP addresses must be within the same domain range. When adding new control towers to an existing mPath Link system, ensure domain ranges match.

If you wish to install the mPath Link software on a server/computer of your choice, please contact your local Pall service or field applications specialist.

5.2 Gas Connections

Figure 8
Rear panel gas connections.

The gas specifications are described in the gases section.
Using 6 mm , 6 bar rated gas tubing and tubing connectors (optional PN CCTOOLKIT) gases should be connected from the utilities gas regulators (2-6 bar) to the rear panel gas connections on the control system and from the control system to the unit.

Connect the Primary and Secondary outlet ports, if required, from the left-hand side of the mPath bioreactor control tower to the unit in use with 6 mm pneumatic tubing.

- Primary provides gas mixes of CO2, air/N2, N2 and O2.
- \quad Secondary provides gas mixes of CO2 and air/N2.

To safely connect gas outlets to the bioreactor gas inlet line, push-to-connect to $1 / 4$ inch hose barb connectors should be used (included in PN CCTOOLKIT7).

5.3 Rear Panel Unit Connections

Certain permanent connections to your chosen bioreact or are located on the rear panel of the tower. Connect these at this point.

Figure 9
Rear panel bioreactor connections

Allegro XRS 25 bioreactor - Ensure the Allegro XRS 25 bioreactor is powered off before making any connections. Connect the communication cable to the Pall Comms port.
iCELLis Nano bioreactor - Connect the docking station communication cable to Pall Power and connect the Modbus cable to the Modbus port on the rear panel of the mPath control tower.

Xpansion bioreactor - No connections from the rear of the bioreactor are made.

©
The iCELLis Nano bioreactor docking station does not have a power button. It will power on once the mPath control tower is powered on.

5.4 Side Panel Connections

Ensure single-use bioreactor vessel is installed before proceeding. Please refer to the respective product installation guide for detailed instructions on the required connections. Connect all required inputs and outputs at this point.

Figure 10
Side panel connections.

5.5 Power on the Bioreactor Control Tower

After completing the previous steps, connect the control tower AC inlet to an AC supply using one of the supplied detachable power cords (UK, EU or US power plugs). Once the control tower is connected, switch on the power via the AC on / off switch.

The status ring on the front of the equipment will flash blue when the equipment is switched on. After approximately 40 seconds the status ring will display a solid blue color or flashing pink.

If the status ring does not show a solid blue color or flashing pink after approximately 40 seconds, refer to Troubleshooting in Section 16.2.

The iCELLis Nano and Xpansion bioreactors will power on together with the mPath control tower. The AllegroXRS 25 bioreactor should be powered on by its respective power switches (see the product user manuals).

5.6 Enabling Network Communications

At this point, network communications between the mPath bioreactor control tower and the mPath Link Server are to be established.

(1)
Please ensure you have read the Pall IT Technical Advisory Note reference USD 3222 before proceeding.

The Pall installation engineer will assist during the following steps to ensure that the mPath bioreactor control tower and the mPath Link server are communicating via the IP addresses provided on the network configuration you have chosen.

- Connect a monitor to the HDMI port on the mPath Link server.
- Power on the mPath Link computer by ensuring the power cord is connected to an electricity supply, preferably on an uninterruptible power supply, then press the power button located on the front. The power button should light blue when powered on.
- Connect a monitor or touch screen to the HDMI port on the rear of the bioreactor control tower. It is important to plug the keyboard and mouse in first before making the HDMI connection.
- The Pall engineer, using their unique passcodes, will set the IP address and Sub Net mask for the mPath bioreactor control tower that you have provided.
- The Pall engineer will then ensure the Pall Link server is set with the IP address provided.

©The mPath Link server does not need to be next to the mPath control tower. It is only required to be on the same network as the control tower.

6. Unit Defaults

To allow quick and easy use of mPath Link, the selectable units have been pre-programmed. These default settings can be accessed, edited, imported and exported from the 'Unit Defaults' tab found within the settings tab at the bottom right of the screen.

When a user creates a unit, the populated settings are taken from the unit defaults and a default recipe is created. Any changes made in the unit defaults will only be taken into effect when a new unit is created.

As stated above, mPath Link already has built in default settings for each of its units. The following sections will explain how the defaults are configured and how changes can be made, if required, to suit specific processes.

If you do not want to make any changes to the default settings proceed to the next section.

6.1 Configuration of Defaults

In the unit defaults screen, all the compatible units with mPath Link can be found.

Figure 11
Unit defaults screen

6.1.1 Import/Export

Unit defaults can be imported or exported to a separate mPath Link application using the buttons in the top right. Selecting export will give the user the option to save a json file of the unit defaults to a location of their choice. When the json file is imported, all existing unit defaults will be overwritten with the 'modified on' and 'modified by' fields being updated. Note that units will have to be recreated for the changes to the defaults to apply.

6.1.2 Unit Default Screen Details

- To view or edit any of the parameters in a unit configuration press the 'Edit' button.
- The first page that displays is the 'Details' tab allowing the name and calibration type to edited. Pall would recommend only changing the name if at all in this page.
- Press 'Next' button to navigate to the I/O config tab,

Figure 12
I/O config screen.

- The I/O config tab populates the selected inputs and outputs required to run your unit.
- To add extra I/O, select the control element in the left-hand column and press the ">" button to move it to the selected I/O column.
- To remove any selected control elements, press the " $<$ " button.
- The name of the I/O can be changed by entering a different Name in the 'Name' field.
- The I/O can be scaled to values that suit your process. Pall does not recommend making scale changes to the I/O that was defaulted upon opening Unit Defaults.
- Click the 'Turn on scaling' check box.
- The raw low and high values will be present as per the raw values of the I/O.
- Use the scaled low and high boxes to define scaling for the unit of measurement of the sensor. e.g. To change Air flow rate from $\mathrm{mL} / \mathrm{min}$ to $\mathrm{L} / \mathrm{min}$, Raw $\mathrm{low}=0 \mathrm{~mL} / \mathrm{min}$, Raw high $=1000 \mathrm{~mL} / \mathrm{min}$, scaled $\mathrm{low}=0$ $\mathrm{L} / \mathrm{min}$, scaled high $=1 \mathrm{~L} / \mathrm{min}$.
- There is also an option to create an offset on setpoint and process values.
- E.g If an offset of +7 is applied to setpoint the value sent to the controlling computer will be +7 larger than the setpoint entered by the user.
- The Allegro XRS 25 temperature input has a default offset of $+0.5^{\circ} \mathrm{C}$ because the PT00 which monitors fluid temperature is outside of the biocontainer. At 25L the distance between the PTOO and the fluid inside the biocontainer causes a temperature offset of $0.5^{\circ} \mathrm{C}$. The fluid is required to be maintained at $37{ }^{\circ} \mathrm{C}$, therefore the default setpoint offset of $0.5^{\circ} \mathrm{C}$ allows the fluid temperature to remain at $37{ }^{\circ} \mathrm{C}$ whilst the heater mat is heating to $37.5^{\circ} \mathrm{C}$.
- Offsets for loweroperating volumes may need to be calculated by the user. PID terms may also need to be re-calculated.

6.1.3 I/O Values

The I/O values screen is used to enter setpoints, range parameters and alarm values for each of the selected I/O. The values set here will automatically be present in a default recipe.

- To make changes, select the I/O from the I/O table on the left side of the screen.
- Click on a parameter in the table on the right side, it will highlight grey and then enter the desired value into the value box.
- The value is saved once entered. The value can be changed by re-selecting the box; entering a new value and pressing "enter".
- The user has the option to enter advanced parameters by switching the toggle from "Simple" to "Advanced"
- Below is a table describing each parameter.

Table 8
Setpoint parameters

Tab	Parameter	Description
Setpoints	Units	Enter the units required for the specific control parameter
Setpoints	Setpoint/ setpoint value	Enter the controlsetpoint that is required once the batch is started
Setpoints	Reset Total Flow	Set to 1 if the total flow should be reset when recipe is loaded. (Only applicable to gases)
Setpoints	Process Value setpoint low	Defines the minimum set point value that can be entered
Setpoints	Process Value setpoint high	Defines the maximum set point value that can be entered
Setpoints	Process Value range low	process screen allowing quick visualization showing how close or far away the process value is from the set point.
Setpoints	Process: Value range high	Like above but this setting completes the range bar

23.87

Setpoints	Name	Name of the selected parameter
	Input maximum	
Setpoints		$\underline{\text { 100\% forsingle controlaction }}$
	Input minimum	
Setpoints		0\% for single control action
Setpoints	Output maximum	This allows the user to set the maximum output of a parameter. For example, oxygen gas has a maximum flow rate of $1 \mathrm{~L} / \mathrm{min}$ but the user can set it to 500 $\mathrm{mL} / \mathrm{min}$ using the output maximum
Setpoints	Output minimum	This allows the user to set the output minimum of a parameter
Setpoints	Name	The user can give a specific name to each I/O
PID (Only available to inputs)	Control Mode	$\underline{\text { Turn on or off control. Set a } 0 \text { for off and a } 2 \text { for on. }}$

PID	Conventional settings	integral windup resetting and limiting. Pall does not suggest making changes in these fields.
PID	Deadband	A deadband is a band of input values in the domain of a transfer function in a control system where the output is zero. The user can widen this band by inputting a value. The value is taken as both positive and negative.
PID	KD	Enter the value required for derivative control of the PID loop
PID	KI	Enter the value required for integral control of the PID loop
PID	KP	Enter the value required for proportional control of the PID loop
PID	Split Deadband	Deadband function when using split PID mode
PID	Split KD Negative	Enter the derivative value required for the negative controlling actuator.
PID	Split KD Positive	Enter the derivative value required for the positive controlling actuator.
PID	Split KI Negative	Enter the integral value required for the negative controlling actuator.
PID	Split KI Positive	Enter the integral value required for the positive controlling actuator.
PID	Split KP Negative	Enter the proportional value required for the negative controlling actuator.
PID	Split KP Positive	Enter the proportional value required for the positive controlling actuator.
PID	Split Negative settings	Active D Internal Element, Active P Internal Element, Output Max Limit, Output Min Limit, Stop I at output limit. These settings control the behavior of the PID loop performance in terms of integral windup resetting and limiting. Pall does not suggest making changes in these fields.
PID	Split PID	Set to True if split PID is to be used.
PID	Split Positive settings	Active D Internal Element, Active P Internal Element, Output Max Limit, Output Min Limit, Stop I at output limit. These settings control the behavior of the PID loop performance in terms of integral windup resetting and limiting. Pall does not suggest making changes in these fields.
Alarms	Critical high/warning high/ critical low/warning low	Defines the alarm limits that will be visible on the process value bar.
Alarms	Deadband	The alarm will not be triggered unless the present value crosses the set point + the deadband.
Alarms	Disable	The user is presented with the option to disable alarms. Even if alarm setpoint is passed, alarm will not trigger.
Alarms	Audible	Enables an audible alarm sound from the tower
Object Specific	Direction	Pumps - clockwise or anti-clockwise
Object Specific	Speed	This is the raw speed value being reported from the control parameter
Object Specific	Max \times angle	Set the maximum angle of the X axis on the Allegro XRS 25 unit platform
Object Specific	Max Y angle	Set the maximum angle of the Y axis on the Allegro XRS 25 unit platform
Object Specific	Park X angle	Set the park angle of the X axis on the Allegro XRS 25 unit platform
Object Specific	$\underline{\text { Park Y angle }}$	Set the park angle of the Y axis on the Allegro XRS platform

7. Creating a Control tower and Unit

If required to run the desired unit, a control tower will need to be connected. The installation engineer will confirm that the IP addresses of both the mPath Bioreactor Control tower and mPath Link server have been set correctly, for the user to log into the application.

The Windows login details are:
Username: mPathLink
Password: mPathLink
The software to run mPath Link is pre-installed on a mPath Link server. The Pall installation engineer will show you how to access it. Log into the mPath Link software.

7.1 Adding a Control tower

- Go to the settings tab and select control tower setup.
- Select the add new control tower icon

Figure 13
Adding a control tower

7.2 Creating a New Control tower

Figure 14
Creating a new control tower

Fields that are mandatory are marked with an asterisk.

1. Select the correct control tower from the drop-down list.
2. Give the control tower a name or identifier using alpha-numeric characters.
3. Enter the static IP address generated by your IT department for the control tower for OPC -UA IP.
4. Enter the port, usually 4 digits to the box next to the previously entered IP address.
5. Enter the CX number of the single board computer within the control tower into the OPC-UA Hostname box. (The CX number is located on the rear of the tower. Clicking the ${ }^{?}$ icon next to the OPC-UA name box shows the location of the CX number).
6. Press "ADD" to save the configuration:

- An option box will pop up asking if you wish to create a unit.
- Pressing "No" will return to the control tower setup page.
- Pressing "Yes" will open the unit setup page

If multiple control towers are required, they can be added by repeating the instructions above.

7.3 Creating a Unit

When the control tower has been created and is showing as 'Connected', follow the steps below to establish mPath Link communications between the control tower and the chosen unit.

Step 1

- When the control tower is created, there is the option to add a new unit. If this is not selected, then the steps below can be followed.
- Go to the settings tab and select unit setup
- Select the add new unit icon
- Select the control tower that will control the unit being connected from the drop-down list and the control tower type will automatically populate. Proceed to Step 2

Step 2

Figure 15
Creating a new unit

- Select the type of unit required from the drop-down list*.
- Enter a name for your unit in the name option box.
- To add password access specific to this unit, click the "Yes" tick box next to use password and enter in the password of choice. To add specific user access to this unit, click the "Yes" tick box next to Only User Access and select the users to gain access.
- If there is no requirement for a password or specific user access proceed to next step.
- Navigate to the I/O configuration tab by pressing "NEXT" or by selecting I/O config on the indicator bar.

When selecting a unit type from the drop-down list, the other option allows the user to create a fully customizable unit. The user will have an additional option to choose if they wish to use electrochemical or fiber optic sensors.

Step 3

The IO config screen will give the user the opportunity to define the $I O$ to connect to the unit:
Note: IO should be selected carefully since a unit cannot be edited once created.

- Displays available hardware to connect to the unit. Using the right arrow button will add the hardware to the unit and remove it from this list.
- Displays hardware that has already been added to the unit. This list will initially display the hardware as defined in the unit default. Hardware can be added or removed using the arrow buttons.
- A user defined name can be given to the hardware
- The hardware can be scaled as defined below
- Off sets can be defined for the set point and/or the process value

To scale the I/O (Figure 17):

- Check the 'Scaling’ check box.
- The raw low and high values will be present as per the raw values of the hardware.
- Use the scaled low and high boxes to define scaling for the unit of measurement of the sensor. e.g. To change Air flow rate from $\mathrm{mL} / \mathrm{min}$ to $\mathrm{L} / \mathrm{min}$, Raw $\mathrm{low}=0 \mathrm{~mL} / \mathrm{min}$, Raw high $=1000 \mathrm{~mL} / \mathrm{min}$, scaled $10 \mathrm{w}=0 \mathrm{~L} / \mathrm{min}$, scaled high $=1 \mathrm{~L} / \mathrm{min}$.
- The offset feature will scale the setpoint or process value to a set positive or negative value. Example, a heater mat setpoint of $20^{\circ} \mathrm{C}$ with an offset of $+7^{\circ} \mathrm{C}$ means that the heater mat will show $20^{\circ} \mathrm{C}$ but will actually be heating to $21^{\circ} \mathrm{C}$.
- If an offset is required on setpoint or process value, enter in the positive or negative offset amount into the fields shown by number 3. The offset will be applied to the inputted setpoint or process value.

Figure 16
Configuring unit I/O

Figure 17
Scaling of I / O

As explained in section 6.1.2, The Allegro XRS 25 bioreactor temperature input has a default offset of $+0.5^{\circ} \mathrm{C}$ because the $\mathrm{P} \Pi 00$ probe which monitors fluid temperature is outside the biocontainer. Offsets for lower operating volumes will need to be calculated by the user. PID terms may also need to be re-calculated.

- To add extra I / O, select the control element in the left-hand column and press the " $>$ " button to move it to the selected I/O column.
- To remove any selected control elements, press the " $<$ " button.
- Biomass, Biomass growth rate, Level sensor 1, Level sensor 2 and Pressure require additional configuration as these connections are customer specific.

If any of the above are required, select them, and move to the selected I/O column:

- Click the 'Turn on scaling' check box.
- Enter the raw low and high values from the table 4 into the raw low and high boxes. Press "enter" after each entry.
- Use the scaled low and high boxes to define scaling for the unit of measurement of the sensor. E.g., Mag Stirrer, Raw low $=0 \vee$, Raw high= 10 V , scaled low $=0 \mathrm{rpm}$, scaled high $=250 \mathrm{rpm}$. This means that at 10 V the Mag stirrer will be rotation at 250 rpm .
- Navigate to the User Configurable I/O tab by pressing "NEXT" or selecting the User Configurable I/O tab

Table 7
I/O Raw Iow and Raw high values

$\frac{\text { Biomass }}{\text { Biomass growth rate }}$
Level 1
Level 2
Pressure

Raw Low
0 mA
0 mA
0 mA
OmA

Raw High
$\frac{\overline{20 \mathrm{~mA}}}{\frac{20 \mathrm{~mA}}{20 \mathrm{~mA}}} \overline{\frac{20 \mathrm{~mA}}{20 \mathrm{~mA}}} \overline{\frac{10 \mathrm{~V}}{}}$

7.4 Creating User Configurable I/O

Figure 18
User configurable I/O

Step 1

If the control tower permits, these ports can be used to connect inputs such as sensors or switches and outputs such as additional pumps or balances:

- Each configurable I/O connection is a M12 A-coded 8-way female connector.
- M12 A-coded 8-way male connectors (user supplied) will be required to connect to these ports.
- Each port can be configured as either analog or digital.
- Each port can also be configured as an input or output.
- The pins are set according to Table 8.
- Pin 1 can be used as either a 24 V digital output or power source to an external sensor. Pin 3 is the $0 \vee$ reference/return for all I/O signals.
- Select from the drop-down list under each I/O what type of signal is required.
- Set a I/O name.
- Enter the units required. As per the example about the units would be grams.
- Select the scaling tick box and enter in the raw low and high scale of the item being connected. E.g. Raw Low $=0 \mathrm{~mA}$ and Raw High $=20 \mathrm{~mA}$.
- Below enter in the scaled low and high values required, eg: low = 0 and high = 1000
- Repeat for the remaining configurable I/O if required.
- Press "SET CONFIGURABLE I/O" button.
- If no user configurable I/O is required, navigate to the summary tab.

Table 8
User configurable I/O connection pins.

Pin Number	Signal	Values
1	Digital output	24 Volt
2	Digital input	24 Volt
3	Ground	0 Volt
4	Analog input	0-10 Volt
5	Analog input	0/4-20 mA
6	Analog output	0-10 Volt
7	Analog output	0/4-20 mA
8	Screen	None

Step 2

Figure 19
Unit setup summary screen

- A review of the settings selected in the previous steps is shown.
- Three options are presented:

1. Save - The configuration is saved, and the user is returned to the unit set-up page.
2. Save and run - The configuration is saved, and the system navigates to the batch screen where a default recipe will be loaded, and a batch started (section 9.4).
3. Cancel - The configuration will not be saved, and user will be returned to unit set up page.

8. Editing, Viewing and Deleting Control towers and Units

8.1 Editing a Previously Created Control tower

- Navigate to the control tower set up screen via the settings tab.
- Press "Edit" on the control tower you wish to edit.
- Make the changes required and press "SAVE".

8.2 Removing a Control tower

- Navigate to the control tower set up screen via the settings tab.
- Press "Edit" on the control tower you wish to edit.
- Press the "Remove" button and confirm the pop-up message.

Figure 20
Removing a control tower

8.3 Viewing a Unit

- To view a previously created unit, navigate to the unit set up screen via the settings tab.
- Press "Select" on the unit to be viewed
- The next button or indicator bar can be used to view the unit configuration. Note that all screens are read only as unit configuration cannot be edited after creation.

8.4 Deleting a Unit

- To delete a unit, navigate to the unit set up screen via the settings tab.
- Press "Select" on the unit to be deleted.
- Press the "Remove" button and confirm the pop-up message.

9. User Interface Interaction

9.1 User Interface Overview

The key aspects of the screen layout are displayed below:

Figure 21
User interface overview

Item	Description
1. Status bar	Will show the alarm status for a given unit in addition to the name of the selected control tower, unit and batch
2. Side bar	Details all connected units. Clicking on the bar will navigate to the home screen of the selected unit. Note that when "system" is selected, screens navigated will relate to all connected units. When a unit is selected, screens will display unit specific content.
3. Navigation bar	Allows the user to navigate to the desired area of the application.
4. User display	Shows the currently logged in user with an option to log out.
5. Settings tab	Allows the user to access system level settings
6. Content area	Displays information relating to the selected screen

9.2 System/Unit Level View

The side navigation bar allows the user to navigate between different connected units. Expanding the "burger menu" shows all connected units grouped by unit type. For units in alarm, they will appear beneath the "burger menu" with the unit name and a colored bar indicating the status. Selecting any of the unit names will navigate to that specific unit where selecting System > Dashboard allows the user to view information relating to the overall system and screens will not be filtered on a specific unit.

Figure 22
Expanded side navigation bar

$\begin{gathered} 25 \text { May } 2021 \\ \text { 14:49:27 } \end{gathered}$	Controller: Unit:	None None			(0)	
		X	Home			
System				OK		IDLE
Dashboard			Unit Name	Nano Default	Unit Name	XRS Lab 1
iCellis Nano			Unit Type	iCellis Nano	Unit Type	XRS25
			Controller Name	Lab Tower	Controller Name	Lab Tower 2
Nano Default			Controller Type	Tower Pumps	Controller Type	Tower Pumps
XRS25			Current Phase	N/A	Current Phase	N/A
XRS Lab 1			Batch	Trial Run - Default Recipe	Batch	Idle
				Select		Select

Figure 23
Alarming side navigation bar

Once a unit is selected from the side bar, the user will then be able to view information specific to that unit. Screens such as recipe management and Alarms will then be filtered to show information relating only to the specific unit. Additional actions will also be available when a batch is in progress and a unit is selected from the left side bar:

Figure 19
Additional actions when batch in progress

$\frac{\text { Item }}{1 \text {-Comment's button }}$

Description
Comments can be added which will be visible in the report (section 15).
Selecting pause will bring up a confirmation window to pause the batch. Once paused, all control loops
will stop, parameter set points will go to zero and the top banner will show as paused. A play button will become visible and once selected and confirmed, all control loops and parameters will return to the state they were in before being paused.

Selecting stop will give the user the option to complete the batch. If confirmed, the batch will end, all parameters will go to the idle state and the top banner will show as idle. The user will have the option to enter a comment at the end of the batch. The action of stopping a batch cannot be undone.

9.3 User Management

As standard, mPath Link software is supplied with a Pall PC where the mPath Link application comes with integrated operating system security. SCADA security can be linked with local operating system (Windows 10 as standard) or with an active domain control tower (for advanced, bigger system deployments).

2 basic user groups are set up to perform activities on the Windows level and 4 within the mPath Link software:
Table 9
Windows user groups

Windows User Group
Administrators
Users

Description

Windows specific: Administrators have complete and unrestricted access to the Windows operating system/domain

Windows specific: Users are prevented from making accidental or intentional system-wide changes to the Windows operating system but will be able to run the mPath Link application

Table 10

mPath Link software user groups

mPath Link Software User Groups	Description
mPathLink Operator	$\underline{\text { mPath Link application - mPath Link Operators Group }}$
mPathLink Supervisor	$\underline{m P a t h ~ L i n k ~ a p p l i c a t i o n ~-~ m P a t h ~ L i n k ~ S u p e r v i s o r s ~ G r o u p ~}$
mPathLink Admin	$\underline{\text { mPath Link application - mPath link Administrators Group }}$
$\underline{m P a t h L i n k ~ S e r v i c e ~}$	$\underline{\text { mPath Link application - mPathLink Service Group }}$

Default users and passwords are set up as per the table below.
Table 11
Windows and mPath Link passwords

Username	Access Area	Member Of	Password
Administrator	Windows	Administrators	mPathLink
mPathLink	Windows	Users	mPathLink
PallOperator	mPath Link Application	Users, mPathLink Operator	mPathLinkOper
PallSupervisor	mPath Link Application	Users, mPathLink Supervisor	mPathLinkSuper
$\underline{\text { PallAdmin }}$	$\underline{\text { mPath Link Application }}$	$\underline{\text { Users, mPathLink Admin }}$	$\underline{\text { mPathLinkAdmin }}$
PallService	$\underline{\text { mPath Link Application }}$	Users, mPathLink Service	Classified

The mPath Link application user groups has a predefined set of access rights. A user with administrator access to the application can alter these permissions by going to the settings tab and selecting Users. From here, the user has the option to edit groups permissions via the tick boxes or restore the permissions to the defaults as supplied.

Figure 24
Users overview

Select Role Permissions to view/edit:	mPathLink Operator	\wedge		
Alarm Edit \square	mPathLink Operator mPathLink Supervisor	iguration View \downarrow	Recipe Create \square	Settings View \downarrow
Alarm View	mPathLink Admin	Event $\log \boldsymbol{\square}$	Recipe Modify \square	System Settings View/Edit \square
Batch Modify Schedule \square		Export \square	Recipe View	Trends
Batch View		Notes \square	Reports \square	
Calibration		Process Edit \square	Setpoint \square	
Configuration Edit \square		Process View \downarrow	Settings Edit \square	

9.3.1 Adding/Deleting Users

All user management is handled outside of application, on Windows level. Adding users to groups, removing users, setting password aging etc. can be performed only by members of the Administrator group.

To add new user, log in as an Administrator user
Figure 25
Administrator login
Right click on the Windows start icon and select Computer Management.

Figure 26
Computer Management

Go to Computer management, System Tools, Local Users and Groups, Users.
Right click and select "New User" to add new user.
Figure 27
Computer management

Enter all necessary details and click "create".

If the option to change password at next logon option is selected, then the user will need to login to Windows (will be prompted to change the password) first to be capable of successfully logging in to the mPath Link application.

Figure 28
Create new user

Right click on newly created user and select properties to configure adequate privileges.

Figure 29

User privileges

Test2 WDAGUtilityAccount	test2	Set Password...		jed a
		All Tasks	>	
		Delete		
		Rename		
		Properties		
		Hen		

Figure 30
"Member Of" configuration

Click on "Advanced" and "Find Now".
Figure 31
Advanced "Member Of" configuration

The list of available User Groups will appear．Select the adequate roles depending on whether the user is Admin， Operator，Service or Supervisor．Click OK．

Figure 32
User groups＂Member Of＂configuration

test2 Properties				：ount managed bs		More Actions		
Select Groups					test2			
Select this object type：	Select Groups							\times
Groups								
Erom this location：	Select this object	type：						
DESKTOP－IMG2P2D	Groups					Qbject Types	es．．．	
	From this location							
Enter the object names to 38	DESKTOP－IMG	2P2D				Locations．		
	Common Quen							
	Name	Starts					Colimns	
noed	Description：	Starts w					Fnd Now	
	\square Disabled	ccourts					Stop	
	\square Non espin	ig passw						
	Days sincel	tlogon．	\checkmark				8	
Add．．．Remo								
OK	Search results：				OK		Cancel	
	Name			In Folder				\wedge
	急IIS＿IUSRS			DESKTOP－IMG．．．				
	䦠mPathlink A			DESKTOP－IMG，				
	䦠mPathunk Op	erator		DESKTOP－IMG．				
	気mPathlink Se	rvice		DESKTOP－IMG				
	監mPathlink S	pervisor		DESKTOP－IMG				
	鱼 Network Coni	guration		DESKTOP－IMG．．．				
	㦛Perfomance	Log Users		DESKTOP－IMG．．．				
	魚Perfomance	Montor U		DESKTOP－IMG．．．				
	鹄Power Users			DESKTOP－IMG．．．				
	與Remote Desk	op Users		DESKTOP－IMG．．．				\checkmark

By default，the new user will be part of two groups the Windows Users group，and one of the mPathLink software groups（in this example，Supervisor）．Click OK．

Figure 33
Supervisor setup

The newly created user will be capable of logging in to the mPath Link software, and privileges will be set automatically based by the group they were assigned to.

To delete the user, login as a user who is a member of administrators group, go to Computer management, System Tools Local Users and Groups, Users.

Right click on the user that needs deleting and select Delete.

Figure 34
Deleting user

9.3.2 Editing existing users

To edit existing user right, click on the user. It is possible to set password, delete and rename a user from the context menu.

Figure 35
Editing existing user

Name	Full Name	Description
囟Administrator		Built-in account for administering...
24. DefaultAcco...		A user account managed by the s...
\% Guest		Built-in account for guest access t...
2- PallAdmin	Palladmin	Otto
Wmallink	PallLink	
E- Palloperator	Palloperator	
E. Pallservice	Pallservice	Otto
1-PallSupervisor	PallSupervisor test1	Otto
Erest1		
test2		
20.WDAGUtility...	test2	zount managed and use...

To access advanced options, click on properties. Various actions are available here including the possibility to disable an account.

Figure 36
Actions when editing existing user

To change the existing user's group membership, click on the "Member Of" tab and click add.
Figure 37
User group selection

It is recommended that the user is a member of only one mPathLink group at the time.

9.4 Quick Start Batch - from a Pall Default Recipe

The mPath Link software has been designed to allow as much or as little customization as the user wishes.
The software includes standard default recipes for each supported unit. The default recipes can be viewed, edited, or duplicated. Using or editing a default recipe reduces set up time allowing a batch to be run quickly with little configuration. The other option is to create a new recipe. The other option is to create a new recipe.

9.5 Running a batch from a Pall Default Recipe

After creating a unit, if save was selected, the main process screen will load with a default recipe specific to the chosen unit, and the batch will be started automatically. Alternatively, you can find default recipes in the recipe manager. The default recipe loaded allows the user to set setpoints, select control options and alarms manually. All control is as per the created recipe. Default recipes can be edited with the general operation of the application. Default recipes can also be edited.

10. Operation

10.1 Home Screen

When "System > Dashboard" is selected from the left side bar, the user can navigate to the home icon to see an overview of all connected units.

Figure 38
System level home screen

Selecting a unit from this view will then navigate the user to that unit specific home screen.

Figure 39
Unit level home screen

Key elements of the screen are detailed below:

$\frac{\text { Item }}{1-\text { Batch progress tracker }}$
$\frac{2-\text { Mini trends }}{3-\text { Control loop overview }}$
$\frac{4-\text { Primary gas pressure }}{5-\text { Phase information }}$

Description

When a batch is running, the batch progress tracker will highlight the phase the batch is in. When no batch is running it will be hidden.

Content area displays process value and set point for pH, DO and temperature over the previous 4
hours.
Displays the control loops that have been configured and whether they are in auto or manual mode.
Current primary gas outlet pressure is displayed
Current time in phase is displayed in addition to total batch duration.

10.2 Recipes

Recipes allow the user to run batches using customized control loops, phases, parameters, alarms, and trends. Control loops, setpoints, alarm values and trend parameters are all created within the recipe manager.

A default recipe is created each time a new unit is created. The default recipe for a given unit can be viewed, edited or duplicated by selecting the desired unit from the side navigation bar followed by selecting recipes > Manage from the main navigation. Using or editing a default recipe reduces set up time, allowing a batch to be run quickly with little configuration. All recipes held within the mPath Link application can be viewedwhen "System > Dashboard" is selected from the side navigation bar.

The help icon explains all actions possible from the recipe management screen.
Figure 40
Recipe management actions

Legend

(0) View Recipe - view selected recipe in read only

Edit Recipe - up-revision the selected recipe and make changes.
Copy Recipe - create a new recipe with a different name, based on the selected recipe.

Retire Recipe - keep the selected recipe, but retire it from use.

Remove Recipe - delete the selected recipe from the system.

Close

10.2.1

Creating a New Recipe
If a fully customized process is required, a new recipe can be created where all parameters are blank to start from. It is recommended that this is only carried out by experienced users.

- Navigate to Recipes > Manage.
- Select "new".
- Select a unit from the drop-down list to run this recipe. (Only previously created units will show in this list. If a unit is not present.
- The recipe must be given a name or identifier; a revision can be set along with a description if required.
- Select the state of released, retired or unreleased from the drop down.
- Navigate to the Control loop configuration screen by pressing "Next" or by selecting the control loops step.

Figure 41
Recipe enter details screen

10.2.2 Control Loop Configuration

- Allowable parameters (input objects) are displayed in the left table which were defined at the time of unit creation.
- Once an available input object has been selected, the desired child can be selected from the outputs list (parent, child terminology used to define how control loops are set up).
- From the list, select a control action (child output) to move to the positive or negative columns. For positive control, the control action will increase the parameter under control from the present value towards the setpoint. For negative control, the control action will decrease the parameter under control from the present value towards the setpoint.
- Multiple control actions can be added to the positive or negative columns. The Up and Down arrows are used to set the priority of the control parameters.
- Navigate to Phases screen by pressing "Next" or by selecting the Phases step.

Figure 42
Recipe control loops screen

10.2.3 Phases

The Phases screen is used to enter setpoints, range and alarm values for each of the selected parameters. The values set here will automatically load once the recipe is selected when a batch is started. Initially a single-phase recipe is created although additional phases can be added with a transition based on either time or process parameter.

To edit the parameters:

- Select a phase (initially only phase one will exist).
- Once the phase is selected, the desired parameter can be chosen from the configure parameter table.
- A simple view will be shown where the user can edit set points, alarm parameters, and enable or disable an alarm.
- Switching the toggle in the top right to advanced allows the user to edit all variables associated with the parameter.

Figure 43
Phase screen - advanced view

1. Select the " + " icon in the phase transitions content box
2. Define the transition type by selecting either duration or process parameter from the drop-down list. Transitions can then be edited using the pencil icon when selecting the desired transition.
3. A new phase will now be added, and all parameters within the second phase will match those in the first.
4. All parameters within the second phase can then be changed if required
5. Up to 10 phases can be added in total by using the " + " icon. The "-"icon can be used to remove any phases.

Figure 44
Duration transition selection pop up

Figure 45
Process parameter transition selection pop up

When selecting a process parameter transition:

1. Select a mathematical operator to define the transition to the next phase
2. Select the I/O that the transition will be based on
3. Select the parameter (normally PV or setpoint) for the chosen I/O that the transition will be based on
4. Select a value at which the transition will occur
5. Select save

In the example shown in
Figure 45 , the transition to the next phase would occur when the process value for temperature is greater than 37. Once completed, navigate to the Trends screen by pressing "Next" or by clicking the trends step.

10.2.5 Trend Configuration

Within the recipe set up, a trend can be created which will be plotted every time the recipe is used. If trends are required specific to the recipe they can be created in the following steps. If not proceed to the Summary step.

Figure 46
Recipe trends screen.

1. Select the " + " icon on the left of the screen.
2. The trend and X and Y axis can be named and the plot background color defined.
3. Once saved, the trend will be added in the left panel and can be selected to then define the desired parameters.
4. The desired parameter can then be chosen through the select parameter window before selecting "Add to Trend". Note the filter icon will be set to process values by default although other more advanced parameters can be filtered upon.
5. The color, Sub plot, style and weight can then be changed.
6. Multiple data points can be added from multiple control parameters to the same graph if desired by setting the Subplot number to the same value
7. To create a new trend, select the " + " icon and repeat the steps. Trends can be removed using the "-" icon.

Figure 47
Recipe trend details.

Once completed, navigate to the Summary screen by pressing "Next" or by clicking the Summary step.

10.2.6 Summary

The user will be given five options:

1. Save (The recipe will save and return the user to the recipe manager).
2. Save and schedule* (Scheduling opens a calendar view with a pop up prompting the user to plan a time to run the recipe later).
3. Save and Run (Saves the recipe and opens a check screen before a batch will begin).
4. Prev (Returns the user to the previous step in recipe configuration)
5. Cancel (Returns to recipe manager screen. Recipe is not saved).

An example of a configured recipe is in

Figure 48.

Figure 48
Recipe example summary screen

Figure 48 can be explained as:
6. Phase 1 - Batch will start and transition to phase 2 once the temperature process value exceeds 37
7. Phase 2 - Phase 2 parameters (as defined in step 3) will be loaded and will transition to phase 3,7 day from the start of phase 2.
8. Phase 3 - Phase 3 parameters (as defined in step 3) will be loaded and will transition to phase 4,2 days and 12 hours from the start of phase 3 .
9. Phase 4 - Phase 4 parameters (as defined in step 3) will be loaded and batch will run these parameters until manually stopped by the user.

Note that a batch will not automatically stop and thus will always require manual intervention by the user to stop.

10.3 Editing and Duplicating a Previously Created Recipe

Default recipes can be viewed, and the parameters can be changed to suit user processes. Editing recipes is a rapid method allowing a batch to be run quickly with little configuration.

- Navigate to Recipes > Manage.
- A list of icons is displayed in the Actions column for each recipe
- Edit allows the user to make changes to a current recipe but upon acknowledging those changes the recipe will be saved as the next revision.
- Duplicating a recipe allows the user to make changes but upon acknowledging those changes the recipe must be saved under a different name. The revision will be set at revision 1 for the new recipe. The original recipe will remain unchanged.
- A recipe can be shared to a different unit type, but any IO differences will be highlighted in a pop-up window. These parameters will not be transferred and will remain as default values.

When a unit is selected from the side bar, by default only recipes related to that unit will be displayed. The user can either change the unit filter or select system on the side bar before navigating to recipe management to bring up all recipes in the system.

10.3. R Removing or Retiring a Previously Created Recipe

Recipes can be removed or retired from the listed view by selecting the "Remove" or "Retire" icons listed next to the recipe in the Actions column (Figure 40).

Remove permanently deletes the recipe.
Retire allows the user to hide the desired recipe from the recipe list. The recipe is not deleted and can be found by selecting the "Retired" option from the State filter.

10.3.2 Search Feature within Recipe Manager

Saved recipes may be searched using the search filter to the at the top of the recipe management screen. By selecting from the filter options detailed below the recipe list will update for a concise view.

Figure 49
Recipe search feature

There are three search options:

1. Unit - This option allows the user to search for recipes created for a desired unit. Select the unit from the dropdown box. Note that when the recipe management screen is entered when a unit is selected on the side bar, the filter will default to show only recipes related to the selected unit.
2. User - This allows the user to display recipes created by a given user
3. State-The user can search for released, retired or unreleased recipes.

10.4 Starting a Batch

Batches may be scheduled for the future or started immediately. The options to do a quick start based on a default recipe or after new recipe creation was already described. Here is described how to schedule and start a default recipe, a recipe which has been saved or that has been saved and scheduled during the recipe creation process.

10.4.1 Scheduling a Batch Linked to a Recipe

Navigating to recipes > schedule allows users to create batches linked to previously created recipes which can be scheduled from the current time or scheduled for use in the future.

The batch will not automatically start on its scheduled time. The user must select and start the batch.
The schedule view allows users to plan batches, view usage on units and schedule resources.

- Click on Recipes > Schedule. (Not required if save and schedule was chosen when creating a recipe)
- The schedule screen has 4 views:

1. Day - Current selected day view.
2. Week - Current selected week view.
3. Month - Current selected month view.
4. Agenda - Tabular view of created batches

The date selector boxes on the left-hand side of the screen allow the user to navigate to a defined region of time. Filters also exist on the left side to filter the view by unit, unit type or user.

Figure 50
Schedule view

After selecting "Add". A pop up will appear. This is not required if save and schedule was chosen when creating a recipe.

Figure 51

Schedule new batch pop up.

- Select a recipe from the drop-down list. If a unit is selected on the left side bar, only recipes available for that unit will be selected. For all available recipes "System" should be selected from the left side bar.
- After selecting a recipe, the unit and control tower will be automatically populated.
- Enter a batch name in the batch name field.
- A description is not required to run the batch but may be used to add extra information.
- Schedule a start and end date and time for the batch from the pop out calendar.
- Press "Schedule".
- Multiple batches can be scheduled by repeating the steps above.
10.4.2 Editing a Scheduled Experiment / Batch
- If changes are required to the scheduled time, click the scheduled batch, and then press the "Modify" button on the right side of the screen. The pop-up box from Figure 51 will appear allowing changes to be made.
- The batch cannot be edited once it has started.

The batch will not automatically start on the times chosen. The batch will also not end on the time stated. The user is required to start and end the batch. Scheduling a batch will place an entry into the calendar allowing users to observe the duration of scheduled batch as well as the unit that the batch is run on.

10.4.3 Deleting a Scheduled Batch

- To delete a scheduled entry, click on the batch and click "Remove".
- A confirmation pop up will appear asking to confirm deletion.
- A batch cannot be deleted once it has been started.

10.4.4 Starting a Batch

After the steps above, select the batch to be started by clicking on it from Recipes > Schedule.

- Click on "Start Batch". A confirmation pop-up will appear asking to confirm the batch start. Pressing "No" will return the user to the schedule. "Yes" will take the user to the batch screen. (User can navigate to this screen through Process > Batch)
- The batch screen displays as overview of the batch details, phases, trends, and control loops.
- Selecting the "Begin Phase 7" button will start the batch after the pop-up is confirmed.
- The elapsed time in phase will start counting and the user will have the option of navigating to Process > Overview to view configured parameters

Figure 52
Batch screen

10.5 Calibration

Sensors, pumps, and internal load cells may all be calibrated. For specific calibration guidance linked to a particular unit, please consult the corresponding unit IFU.

After selecting the desired unit from the side bar, the calibration menu can be navigated to by selecting the settings tab > Calibration. A list of all configured parameters available to calibrate will be displayed.

Calibrations can also be completed by selecting the calibration tab from the faceplate for a specific parameter
Calibration parameters will only be present for the I/O that was added when creating the unit.

The pH fiber optic cable provided with the Allegro XRS 25 and Xpansion multiplate bioreactors is a reusable cable, which works in conjunction with a disposable optical pH sensor. To ensure proper calibration of the sensor and to compensate for any discrepancy, a calibrated offline benchtop pH meter will be required.

1. Prior to calibration, ensure the fiber optic cables are connected to the sensor location points on the bioreactor and ensure the sensor spots within the bioreactor are hydrated.
2. Enter the values for $\operatorname{Lmin}, \mathrm{Lmax}, \mathrm{pHO}, \mathrm{dpH}$ and Temperature in their respective edit boxes, as marked on the label on the top of biocontainer or on the biocontainer box.
3. When all values have been entered, press the Trigger Calibration "Done" button. The screen will display "Calibrate" and the probe status will change to Calibrating. Note: Calibration can take up to 30 seconds to complete.
4. Take a sample of growth medium from the unit and measure the pH using the external meter.
5. Enter the offline value into the pH offline value box and press confirm.
6. The offset is calculated automatically, and calibration is complete.

Figure 53
Presens pH Calibration

General	Probe Calibratio	Data	pH			
Notes	Raw Value:	-31073	Process Variable:	0.00 pH		
Alarms	State:	Unknown	Offline Value:	0.00		
Trends	Lmin:	59.00		Confirm		
Loop Config	Lmax:	14.00	Offset:	0.00 pH		
Calibration		7.00	Sample Rate:	30 sec		
Advanced	dpH:	0.35				
Misc	Temperature:	37.00				
	Trigger \square	libration: ne				
				Apply	Save	Cancel

The DO fiber optic cable provided with Allegro XRS 25 and Xpansion multiplate bioreactors is a reusable cable, which works in conjunction with a disposable optical DO sensor.

1. In their respective edit boxes, enter the DO Calibration Factors that are marked on the biocontainers label (and its box): Cal 0\%, Cal 100\%, Temp (degC) and Pressure (hPa).
2. When all values have been entered, press the Trigger calibration "Done" button. Calibration can take up to 30 seconds to complete.
3. Enter the offline value into the pH offline value box and press confirm.
4. The offset is calculated automatically, and calibration is complete.

Figure 54
Presens DO calibration.

10.5.2 Calibrating Electrochemical pH and DO Sensors

Electrochemical pH is a two-point calibration:

1. Select Electrochemical pH from the list on the left-hand side of the screen and select the "Start Calibration" option.

Figure 55
Electrochemical pH Calibration Step 1

pH				
General	Probe Calibration Data	pH	Offset	
Notes	pH: 6.42	Process Variable: 6.42 pH	Offline Value:	
Alarms	Temperature: 27.84			Confirm
Trends	Calibration Point: 7 pH		Offset:	0.00 pH
Loop Config				
Calibration	Temperature Feedback pH:			
Advanced	Mode: PT100 EC			
Misc	All			
	$\begin{array}{rr}\text { Manual SP: } \\ \text { Slope: } & 102.00 \\ \end{array}$			
		Apply	Save	Cancel

[^0]3. Once this has been done, ensure the value has stabilised before selecting the "Calibrate" button.

Figure 56
Electrochemical pH Calibration Steps 2,3

				pH
General	Probe Calibration Data	pH	Offset	
Notes	pH: 6.42	Process Variable: $\quad 6.42 \mathrm{pH}$	Offline Value:	0 pH
Alarms	Temperature: 27.84	Place pH probe in buffer 7		Confirm
Trends	Calibration Point: 7 pH	2	Offset:	0.00 pH
Loop Config				
Calibration	Temperature Feedback pH:			
Advanced	Mode: PT100 EC $~$	Calibrate 1: 7 pH		
Misc	$\text { Manual SP: } \quad 0.00$	(3) Calibrate		
	Slope: 102.81\%	Cancel Skip		
		Apply	Save	Cancel

4. A prompt to place the pH probe in a second buffer will appear and the value can be entered in to the "Calibrate 2" box. This can be skipped if only completing a one-point calibration.
5. Place the probe in the second buffer and once the value has stabilised, select the "Calibrate" button once complete to finalise calibration.
6. When performing an offset for either the first or second calibration step, type the correct pH reading into the "Offline Value" box on the right side of the screen.

Figure 57
Electrochemical pH Calibration Steps 4, 5, 6

Electrochemical DO and Hamilton Digital DO is also a two-point calibration:

1. Select Electrochemical DO from the list on the left-hand side of the screen and select "Start Calibration"

Figure 58
Electrochemical DO calibration step 1.

2. The user will be prompted to place the probe in a O\% DO environment.
3. Press "Calibrate" button.

Figure 59
Electrochemical DO calibration steps 2,3.

4. The user will be prompted to place the probe in a 100% DO environment.
5. Ensure the value is stable before selecting "Calibrate" to complete.

- When using Hamilton Digital the calibration status is displayed as a numerical value.

6. When performing an offset for the one point or two-point calibration, type the offline DO reading into the "Offline Value" box on the right side of the screen.

Figure 60
Electrochemical DO calibration steps 4, 5, 6

10.5.3 Calibrating Pumps

Single point calibration. To calibrate pump flow additional equipment is required. Please source a measurement container which can hold liquid. E.g. measuring cylinder.

1. Connect a section of tubing, equivalent to that being used under sterile conditions to the pump of choice.
2. Ensure one end is in fluid of similar viscosity to fluid used during cell culture.
3. Ensure the opposite end of the tubing is in the measuring container.
4. Prime pump by ensuring tube is full of liquid before calibrating.
5. Set a value in the "Setpoint" field.
6. Click the "Time Start" button.
7. A timer will begin on screen.
8. Press the "Time Stop" button and observe what volume of the measuring container has been reached.
9. Enter this value into the total volume box. (Units are mL).
10. Press "Calculate" to complete calibration.
11. Perform for additional pumps if required.

Figure 61
Pump calibration steps

10.5.4 Calibrating Hanging Load Cells

Ensure an offline balance is available to weigh the hanging biocontainer. Follow the onscreen instructions to perform calibration of the hanging load cells. All parameters are in grams.

1. Select "Start Calibration" and type in an empty weight value in step one, press enter. Select "Next Step".

Figure 62
Hanging load cell calibration step 1

2. Place the hanger in position and type in an empty weight value in the tare box. Wait for the empty weight value to stabilize and press next step.

Figure 63
Hanging load cell calibration step 2

		Hanging Load Cell 1 Mass	
General	Load Cell Calibration		
Notes	Step 1:		
Alarms	Install hanger to get an empty weight.		
Trends	Empty Reading: 0.02		
Loop Config			
Calibration	Enter in your empty weight:		
Advanced	Tare: $\quad 0 \mathrm{~g}$		
Misc	Next Step		
	Cancel		
		Save	Cancel

3. Hang the heaviest weight (up to a maximum of 2 kg) from the load cell and type in its value in grams. Select "Complete Calibration".

Figure 64
Hanging load cell calibration step 3

10.6 Monitoring a Running Batch

When a unit is selected from the side navigation bar, The Process icon can be selected from the bottom bar with links to the "Overview" and "Batch" screens. Note that the batch screen will only be visible when a batch is running for the selected unit.
10.6. 1 Overview Screen - Process View

Figure 65
Example process overview screen

A graphical representation of the configured parameters is displayed with the key elements of the standard process overview symbol below. Figure 26.

Figure 26
Process overview screen

Item	Description
Parameter Name	Name ofthe parameter which can be configured when setting up a new unit.
Process value and units	Current value of the parameter also graphically displayed with the upside-down triangle
Border colour	Border colour will change depending on whether the parameter is in alarm. It will show red for critical alarms and orange for warning alarms (unless alarm is disabled).
Alarms disabled	This icon will only be displayed if the parameter has 1 or more alarms disabled.
Parameter in manual	This icon will only be displayed if the control mode of the IO is in manual.
Slider with alarm units	Shows the process value and setpoint on a slider, with alarm limits configured and the diamond representing the set point

The process overview screen is designed to accommodate any hardware that may be added or removed during the unit setup. If additional hardware is added during unit setup, then the corresponding process symbol will be displayed in a space on the process overview screen once the unit is created. Due to space constraints in the process view, certain parameters will be visible only on tabular view.

The layout of the process screen is designed to map the physical process as closely as possible and will follow the general layout below. The connectors will show as a dotted line when a piece of hardware is not active or turned off and solid lines when the hardware is in use.

Figure 66
Process overview screen layout.

Selecting the grey unit inputs section in the middle of the screen brings up a pop-up displaying unit specific information.

10.6.2 Overview Screen - Tabular View

Using the buttons at the top right of the process screen, the user can switch the view to a tabular layout. The information within the table matches that displayed in Figure 65 and will be the default view if using a tablet.

Scrolling to the bottom of the tabular view will show a "Unit Details" item which has the same functionality as selecting the grey unit input box in the middle of the "Process View" layout.

Figure 67
Process overview tabular view

10.6.3 Overview Screen - Control Loop View

A control loop view can also be selected from the top right of the process screen. This gives the user a table of all control loops configured for the current batch. It will detail the control loop state and parent child relationship of the configured parameters.

Figure 68
Process overview control loop view

10.6.4 Faceplates

Configuration of setpoints, alarms, trends, and other settings for each parameter is carried out by first selecting the desired parameter from the process overview screen. This opens a faceplate as shown below:

10.6.5 Typical Parameters

Figure 28
Typical parameter faceplate.

Tab

Tab	Description
General	Process Value - This is the value that is being read by the sensor. Setpoint - User editable Alarm Limits - Critical/warning, high/low, critical, alarm configuration Control Mode - Either off or on can be selected Object details - Object specific details such as raw sensor value Output - Percentage power used when attached to a control loop Action buttons - Apply to confirm value, save to confirm value and exit faceplate, cancel to exit faceplate without saving any edits not already applied
Notes	Allows the user to add notes to each parameter faceplate.
Alarms	- Critical/warning, high/low, critical, alarm configuration - Disable/enable tick box - Deadband
Trends	Mini trend to view either process value or setpoint. Date range also configurable
Loop Config (visible for input parameters only)	Displays status of control loop and outputs linked to the control loop. Control mode will have three options: - Name (e.g., temperature) - output will control temperature in this case - Manual - Output will operate based on defined set point and not control input - Off-Output will be turned off
Calibration	If applicable calibration for the selected parameter can be conducted following the same steps as detailed in section 10.5.
Advanced	- PID parameters can be set - Split mode (only visible for certain parameters) Allows user to set different parameters to control the positive and negative sides of the controlloop - Outputs for positive and negative sides of the control loop are displayed (only applicable for split mode, if not only one value will be displayed)
Misc	- Set point Limits defines the minimum and maximum values that can be entered as a set point - Range Limits defines the total length of the visualisation bar - Scalar limits: Input Min and Max is the \% of the control loop that this parameter operates within. Output Min and Max is a limit on the output of that controlaction.

Figure 29
Gas handling faceplate.

Tab

Description

Process Value - This is the value that is being read by the sensor.
Setpoint - User editable
Alarm Limits - Critical/warning, high/low, critical, alarm configuration
Control Mode - Either off or manual can be selected
Object details - Object specific details such as flow totaliser
Action buttons - Apply to confirm value, save to confirm value, and exit faceplate, cancel to exit

General

faceplate without saving any edits not already applied
Allows the user to add notes to each parameter faceplate.

- Critical/warning, high/low, critical, alarm configuration
- Disable/enable tick box

Alarms
Trends

Misc

- Deadband

Mini trend to view either process value or setpoint. Date range also configurable

- Set point Limits defines the minimum and maximum values that can be entered as a set point - Range Limits defines the total length of the visualisation bar
- Scalar limits: Input Min and Max is the \% of the control loop that this parameter operates within. Output Min and Max is a limit on the output of that control action.

10.6.6.1 Primary Gas Faceplate

The Primary gas faceplate shows a visual representation of the gas mixes flowing out of the primary gas port.

Figure 30
Primary Gas Faceplate.

Tab

General	Object Details - Shows pressure through the primary port Object Details - Valve allows the user to close the outlet value preventing gas flow through the primary port. Object Details - Valve mode allows the user to place the valve action into manual or auto. For optimum use leave in auto mode is recommended Object Details -The enable fill button is a press and hold button which allows air only to flow through the primary port. Once the button is released air will stop flowing. This function is not flow controlled so care should be taken when using. This feature is designed to inflate units with air or top up with air. As a safety feature the user must select the enable fill tick box, a pop-up message will appear saying 'Are you sure you want to enable fill?' When yes is pressed the "Off" button is selectable. If the button is not pressed within 30 seconds it will return to an un-selectable state. Primary - Flow diagram is a visual indication to show exactly which gas and flow rate is supplied through the primary port.
Notes	Allows the user to add notes to each parameter faceplate.
Trends	Mini trend to view either process value or setpoint. Date range also configurable
	- Critical/warning, high/low, critical, alarm configuration for pressure alarms - Disable/enable tick box
Alarms	- Deadband

(1)Fill Feature: As explained in the table above this button allows for rapid flow of air only, to aid in filling units. The button must be held down to allow air to flow. Once released the air flow will stop.

10.6.6.2 Secondary Faceplate

The Secondary gas pop up screen shows a visual representation of gas mixes flowing out of the secondary gas port.

Figure 69
Secondary Gas Faceplate.

The Secondary gas pop up screen shows a visual representation of gas mixes flowing out of the secondary gas port.

Tab

Description

Gas Outlet - Shows pressure and total flow being passed through the primary port.

Gas Outlet - Valve allows the user to close the outlet value preventing gas flow through the primary port.

Gas Outlet - Valve mode allows the user to place the valve action into manual or auto. For optimum use leave in auto as shown above.

Flow diagram is a visual indication for the user to show exactly what gas and how much flow is leaving

General
Trends

the primary port.

Mini trend to view either process value or setpoint. Date range also configurable

- Critical/warning, high/low, critical, alarm configuration for pressure alarms
- Disable/enable tick box

Alarms

10.6.6.3 Batch Screen

When a batch is running and a unit is selected from the left side bar, the user can navigate to Process > Batch for a summary of the running process.

Figure 70

Batch screen.

Tab

1. Batch

Description

Provides the control tower, unit, recipe, and batch details for the current batch.
Specifies any trends set up as part of the running recipe
Shows the currently running phase, duration of the phase and the transition details required to be met to move into the next phase. Two action icons are available:

Pause icon: Will stop the batch moving to the next phase even if the transition criteria have been met. Note that the batch will continue running the current phase as defined in the recipe whilst the transition is paused. When un-paused, the batch will move to the next phase if the transition criteria have been met.

Skip icon: Will move to the next phase regardless of if the transition criteria has been met. The batch will start running the parameters from the new phase it enters as defined in the recipe. If a phase is skipped
3. Recipe Phases
4. Control Loops it is not possible to return to the previous phase
Defines the controlloops as set up in the recipe

The status column in the recipe phases section (area 3 in Figure 70) will display the status of all previous phase and the currently running phase which may be:

- Running - Successfully running parameters forcurrent phase. Will evaluate criteria in condition column and transition to the next phase once met
- Running (On Hold) - Successfully running parameters for current phase. Batch will not transition to the next phase until the play button is selected.
- Skipped - Indicates a previous phase was manually skipped
- Completed - Indicates a previous phase was successfully completed and transition occurred as planned.
- Failed - Indicates a failed transition (occurs only in the event of the mPath Link server being powered off when a transition was planned). Batch will continue running using parameters from the previous phase.

11. Detailed Configuration and Batch Management

11.1 Control Loop Configuration

The control loop is created within a recipe. The control of pH , dissolved oxygen and temperature are achieved using a proportional, integral, and derivative (PID) control tower.

Default control parameters have been set by Pall using Pall standard operating procedures and representative cell lines. If your cell line has consumption and production dynamics which vary significantly from the cell lines used in tuning, then custom tuning may be required. Further details are available on request from your Pall applications specialist. When a loop is created, the maximum and minimum input values relate to how much of the loop in percent is used to control to the desired setpoint.

Each output parameter connected to a loop is shown on the control loop tab of the corresponding input.
Figure 71
pH Loop config tab step 1

1. To activate the loop, ensure that the control mode is set to "On" from the general tab of an input parameter (for example Nano Temperature).
2. On the "Loop Config" tab of an input, ensure the control mode for the actuator is set to the desired input. Note: The available input displayed in the control loop column is configured during recipe set up.
3. If set to manual, the actuator will not control the input but will instead run at a manually entered set point. If set to off the output will turn off.
4. In the example above, "Nano Heating" can be linked to Nano Temperature by clicking the "Nano Temperature" control box. To activate temperature control, the control mode on the general tab of the Nano Temperature face plate should be set to "On".

Figure 72
pH Loop config tab step 2, 3 and 4

11.1. \quad Single Parameter Control

If a loop has been created with only one positive control parameter, the minimum input is 0% and the maximum input is 100%. This means that the control parameter is used the entire time the loop is active to control to the desired setpoint.

For negative control, the maximum and minimum values range from 0\% to -100\%.

(1)
When creating negative controlloops ensure a negative value is written to the input minimum and maximum parameters.

These parameters can be set by the user in the recipe to suit the needs of the batch. A single parameter control loop does not need to be $0-100 \%$ if the user does not require full use of that output.

©If an output minimum and maximum is not set for a control parameter, the parameter will run at 100% power/speed or flow rate.

In the example below, temperature is being controlled by using a heating element as one positive child. The example shows that if the temperature loop output is at 100\%, due to the present value being far below the desired setpoint, the heating element will be outputting its maximum power of $65^{\circ} \mathrm{C}$ to raise the temperature present value. As the temperature rises the output loop percentage will decrease which will in turn reduce the output power of the heating element allowing smooth control around the desired setpoint.

Figure 73
Single parameter control graph.

11.1.2 Multiple Parameter Control

If two or three control parameters have been selected, the minimum and maximum inputs depend on the order of the desired control. The up and down buttons in the control loops section of the recipe edit screen are used to set a priority of which control parameter is used before the next, to control to the desired setpoint.

Figure 74
Child priority buttons.

The explanations below are examples only; all settings are user editable in recipe set up. The percentages allow the control tower to switch control parameters if the desired setpoint cannot be reached using the initial control parameter.

Two actuators (children) - $7 / 2$ split

1. Positive control - The control parameter selected first should have a minimum input range of 0% and a maximum input of 50%. The second control parameter should have a minimum input of 50% and a maximum input of 100%.
2. Negative control - First control parameter 0% minimum and -50\% maximum. Second control parameter 50\% minimum and -100\% maximum.

- Three control parameters

1. Positive control - The control parameter selected first should have a minimum input range of 0% and a maximum input of 33%. The second control parameter should have a minimum input of 33% and a maximum input of 66%. The third control parameter should have a minimum input of 66% and a maximum input of 100%.
2. Negative control - First control parameter 0% minimum and -33% maximum. Second control parameter -33\% minimum and -66\% maximum. Third control parameter -66\% minimum and -100\% maximum.

The percentages allow the control tower to switch children if the desired setpoint cannot be reached using the initial child.

The example below shows the switching point at 65\% DO output where agitation will increase in speed whilst oxygen is still be added at a fixed flow rate. When below 65%, agitation will run at whatever value the output minimum is set to.

Figure 75
Two child DO control using Oxygen and Agitation.

Figure 76
Multiple parameter control graph.

In the example above each limit (lim) represents the child's input minimum and input maximum values in percentage.

As the control loop output percentage increases towards 33\% the green child will be delivering is output. As the control loop passes 33%, the green child's input maximum limit has been reached. This means that the green child will continue to deliver its output but at a constant rate. The blue child will begin to deliver its output alongside the green child. If the control loop cannot maintain its setpoint even though both children are supplying their output, the loop percentage will further increase. As the loop percentage increases past 66% the purple child will start to deliver its output alongside the green and blue children.

If the control loop reduces below any of the input minimum limits the children will reduce their output delivery or turn off altogether. Once control has been gained and the present value is closely matching the setpoint, the loop output percentage will stabilize.
17.1.3 DO and pH Control Philosophy

- Dissolved Oxygen- Can be controlled via positive and negative control parameters enabled during recipe setup. The P, I and D terms represent one control loop controlling to a user defined setpoint. The positive and negative control parameters are activated when the present value is either higher or lower than the desired setpoint:

1. Positive control is active when process value is lower than the setpoint
2. Negative control is active when the process value is higher than the setpoint.

The accuracy range for dissolved oxygen is $+/-5 \%$ of the setpoint.

- pH - Like DO, pH can be controlled by positive and negative control parameters to a setpoint with a common dead band. The dead band is equidistant to the setpoint. pH will be controlled by 2 sets of P, I and D parameters. One set for the acidic setpoint (positive side of the dead band from the setpoint) and one set for the basic setpoint (negative side of the dead band from the setpoint). The user interface will display both sets of P, I and D values which are editable.

12. Alarms

12.1 LED Light Ring

During a batch, the status ring encircling the face of the control tower will change color depending on the status of the batch. If there is an alarm detected:

If there is an alarm detected:

- The status ring will be amber or red depending on criticality
- Or pink if a system alarm is detected.

Figure 77
LED light ring colors.
OK

12.2 Status Bar

The top status bar will reflect the state of the unit selected from the left side bar. If "System > Dashboard" is selected on the left side bar, then the status bar will display the highest priority of any connected unit. Priority from highest to lowest. Table 9.

Table 9
Priority level.

Text	Color	Description
Critical	Red	Low low or high high alarm
System	Pink	System error
Warning	Amber	Low or high alarm
OK	Blue	Running batch with no alarms
Paused	Blue	Paused batch with no alarms
Idle	Grey	No running batch with no alarms

If the status bar is selected, then the user will be navigated to the alarms screen. If system, is selected from the left side bar, the alarms screen will show all alarms from all connected units. If a unit is selected from the left side bar, the alarms screen will be filtered on the specific unit and the filter will not be configurable.

12.3 Alarm Screen Description

The alarms screen can be accessed through either the status bar or the main navigation.
Figure 78
Active alarms screen.

The alarms screen has two tabs for active and historical alarms. The active screen is set out in a tabular format showing the alarm status, description, date/time stamp and buttons to disable and/or acknowledge. This will display alarms that have not been cleared (still triggered) or alarms that have not been acknowledged.

Prior to an alarm being acknowledged, the light ring will flash and the row in the active alarms screen will be amber, red or pink dependent on the alarm type. Once an alarm is acknowledged, the light ring will stop flashing. The alarm status will show as acknowledged but it will remain in the active alarms table. The background color will change to white for the row that has been acknowledged.

The status bar will remain the color of the alarm until the alarm is acknowledged and cleared. If the alarm criteria are no longer triggered (e.g.temperature recovers above low alarm) or it is disabled, the status in the active alarms table will show as cleared and the status bar will no longer display the alarm color once acknowledged. If an alarm has been cleared but not acknowledged, the status bar will remain the color of the alarm until it has been acknowledged. The user can filter the alarm view by selecting system or I/O alarms, unit, state or by use of the free text filter.

The historical tab displays past alarms and can be filtered as per the active alarms screen with the addition of being filtered by batch.

12.4 Alarm Configuration

12.4.1 Settings Tab

When a unit is selected from the side bar, the user can navigate to the alarm configuration screen using the settings icon.

Figure 79
Alarm configuration screen.

Through this screen, the user can configure critical and warning set points for each parameter relating to the selected unit. in addition, the user can change the dead band or use a tick box to enable or disable the alarm. The "Main" option relates to hardware alarms, which have no setpoints, so can only be enabled or disabled.

12.4.2 Faceplate

Alarm setpoints can also be viewed and edited during a batch by selecting the desired parameter from the process screen.

- From the process screen, first select the desired parameter and select the Alarms tab.
- When an alarm is present, the border of the triggered alarm will show in color on the faceplate in addition to the status bar.
- The alarm can be acknowledged if it is safe to do whilst the issue is investigated. The color will remain around the alarm border and on the navigation bar until the alarm is acknowledged and cleared

Figure 80
Alarms tab with high alarms triggered

- Once acknowledged and cleared (either by being disabled or the process value coming back within limits, the status bar will show as idle or OK if no other alarms are present.

12.5 System Alarms

System alarms will present when issues occur which are not related to user set alarms in a recipe, for example, loss of communication between control tower and mPath Link server. System alarms will display a flashing pink color status ring on the control tower and status bar on screen.

System alarms will be displayed in the active alarm screen with the row highlighted pink:

- Many system alarms can be cleared by ensuring all connections are connected securely and communications between tower and unit are active.
- If all connections are properly connected the alarm should self-clear. Alarm will only self-clear if acknowledge button has also been selected.
- If the alarm does not clear, and it is safe to do so, disabling the alarm will allow continuation of the batch and the LED light ring will return to blue.
- If the system alarm is not removed, please refer to troubleshooting.

If an alarm is present and the unit is deleted from the mPath Link software, the alarm will remain on the control tower. To remove this alarm, a new unit will need to be created to clear the alarm. To avoid this, remove or acknowledge all alarms before deleting a unit.

A list of alarms that are not present in faceplates are included in Appendix E for troubleshooting purposes.

12.6 Disabling Alarms on Batch Start

When a batch is running, all alarms are active. The control tower will display warning and critical alarms due to the high and low setpoints as well as system alarms. During preparation of a batch, present values of many parameters will be either above or below the setpoint. In this case the control tower will display alert and critical alarms on the mPath Link server and via the LED light ring. Alarms at this stage in a batch may be bothersome to the user due to the duration of the preparation stage.

To disable alarms for this stage of the batch the user can acknowledge and disable where required either through the faceplate or the alarm configuration screen. Acknowledging and disabling alarms should only be undertaken by experienced users and will not be available to those with operator user privileges.

13. Trends

13.1 Active and Batch

With a unit selected from the side bar, selecting the trends icon will navigate the user to the active trends screen. From here, the user can create and save trends specific to the selected unit and view any trends created as part of a running batch.

Figure 81
Active trend screen.

Area of Screen

Description
1 - Pen Selection

	Choose the parameters to trend before selecting "Add to Trend". By default, the view will be filtered to process values, but the filter icon can be used to trend more advanced parameters.	
$\frac{3-\text { Saved Trends }}{3-\text { Trend }}$		Trend configurations can be saved and edited
$\overline{5-\text { Trend Settings }}$		

With system selected from the side bar, selecting the trends icon will navigate the user to the batch trends screen. This has the same functionality as the active trends screen with the addition of the batch filters which allows historical trends to be configured based on unit, recipe, date, or batch.

Figure 73
Batch trend screen

A range of different actions can be conducted to alter the current trend which are explained using the on-screen help button.

Figure 74
Trends help button overview

Toggle Split Chart - allows user to view trends on one plot of split each pen out.

III
Toggle View Multiple Axes - allows user to turn multiple Y axes on or off.
Zoom In - allows user to zoom in on the current plot.
Zoom Out - allows user to zoom out on the current plot.
Pan Mode - allows the user to pan and zoom around the plots.
X-Trace Mode - allows user to view values at selected points on the trends.

X-Trace Clear - allows user to clear all X-Traces on the trend
Brush Mode - allows user to brush a range on to the chart to see further details of that range.
Annotation - users can add comments to the chart at any data point.

Export - export the data from the charts. Different options are available.
Reset Trends - clear all pens and traces from the chart(s).

13.2 Trend settings

Selecting the trend settings icon allows for a range of detailed configuration.
13.2. 1 Axes

Figure 75
Trend's axis configuration

Chart Settings \times				Chart Settings > Edit Axes		
Axes	Pens	Plots	Columns	General Axis Name		
Axis Name	Axis Label			Default		
			\bigcirc -	Axis Label		
Default	+ Add Axis			Axis Width		
				60		
				Data Format		
				Number		*
				Position		
				Left		\checkmark
				Label Color Label Offset	Label Font Size	
				\#757A7F - 0	10	
				Range		
				\checkmark Auto Range		
				Ticks		
				Tick Color Font Color	Tick Font Size	
				\#757A7F * \#757A7F *	10	
						Done

A list of all available axes on current plots will initially be displayed. Selecting the pencil icon next to an axis will bring up the settings allowing for customization to labels, colors, text, and general formatting.

Figure 76

Trends pen configuration.

Any parameters that have been added to a trend will be displayed as a "Pen". They can be removed by pressing the bin icon or edited with the pencil icon. By default, any added pens will be plotted on the same plot initially. By selecting the drop-down icon for plot, the pens can be moved onto separate plots if required. If multiple axes have been added, it is possible to move the pen to a different axis using the axis dropdown.

A range of different formatting options can be changed on the pen and scrolling to the bottom of the edit pens window will show a preview of the current configuration.

13.2.3
 Plots

Figure 77
Trends plot configuration.

Chart Settings \times				Chart Settings >	Edit Plots	
Axes	Pens	Plots	Columns	Plot \# 0		
Plot \#		Weigh		Relative Weight		Background
				1		\#FFFFFF -
Plot \#0		1	- -	\pm Add Marker		
	\pm Add Plot					

Initially pens will be added to the same plot. Selecting the "Add Plot" option will add an additional plot which pens can be added to. Plots can then be removed using the bin icon or re-formatted using the pencil icon.

Figure 78

Trends column configuration

Chart Settings			
Axes	Pens	Plots	Columns
Select datapoints to display on the Pen Control Panel			
Current Value			\square
Minimum			\square
Maximum			\square
Average			\square
X Trace			\square
Axis			\square
Plot			\square
Select datapoints to display on the Range Brush Table			
First			\square
Last			\square
Minimum			\square
Maximum			\square

Selecting the columns option defines the parameters that can be displayed when using the "Brush Mode" and the Pen Control Panel.

The pen control panel can be accessed by selecting the icon highlighted in Figure 79 beneath the xaxis. This then brings up a collapsible row detailing additional information about the trend area on screen

Figure 79
Trends pen control panel

When the brush icon is chosen, dragging on a region of the cart will "brush" that area for further details.

Figure 80
Trends brush feature

The brushed region will be greyed out on the trend and the details as defined in Figure 74 will be displayed beneath the xaxis. To remove the brushed region from the screen the bin icon (highlighted in red Figure 80 can be selected).

13.3 Batch Compare

Selecting Trends > Batch Compare allows the user to compare trends of historical or running batches through the batch compare screen.

Figure 81
Batch compare screen

- Select a batch using the Add Batch icon. Multiple different batches can be added.
- Once added, select the "Add Parameter Trend" button in the middle of the screen
- This will show a list of available parameters to trend initially filtered to process value and setpoint.
- Selecting the filter icon allows the user to trend advanced parameters including alarms, engineering setpoints, object specific details and PID settings.

Figure 82
Batch compare. Add parameter trend button

1. Once batches and parameters have been added, the trend will appear in the content area. A separate plot will be displayed for each parameter and each plot will have a trend line with a different color for each batch. All trends will be plotted from the start of the batch with the xaxis displaying "minutes from start of batch".
2. Plots can be removed using the x in the top right.
3. Batches can also be removed using the x next to the batch. The plots will remain and display the configured trends for the remaining batches.
4. Additional trend parameters can be added using the "Add parameter Trend" button.

Figure 83
Batch compare screen example

14. Events

The Events screen displays in a tabular format, all actions made by the user when commands are written to the programmable logic control tower. When system is selected from the side bar, the table will display entries from all connected units with the option to filter on unit, user, or batch. When a unit is selected from the side bar, the filter will be set to view only events related to the selected unit.

Figure 84
Event log screen

The event log displays the event date/time, user, unit, description, previous value, new value, and device in a tabular format. In addition to the standard filters listed above, the screen also has search filters based on text or date range.

14.1 Export

Selecting the export button brings up a preview pdf view of the current screen. Note that the preview will include any filters that have been set. Selecting the export icon will allow the user to export a pdf of the events table to a location of their choice.

15. Reports

Reports are automatically generated upon completion of a batch. Navigating to the reports tab when system is selected from the side bar shows reports that have been generated across all units. The user will be able to filter by unit, user, or state (released, retired or unreleased)

If a unit is selected from the side bar, only reports related to that specific unit will be displayed. The unit filter will be fixed to the unit and the user will be able to filter by user or state. Three actions are available for each report.

Figure 85
Report actions
Legend
View Report - opens the report viewer for the
selected batch report.
Export to CSV - exports the selected batch report
to CSV format.
Export to PDF - exports the selected batch report
to PDF format. Options are available.
Close

15.1 View

Selecting the view icon allows the user to view different aspects of the batch. From the details tab, the user also has the option to export the report.

Table 11
Available batch aspects.

Tab	Description
Details	Gives the unit and recipe details in addition to the batch start and finish times
Phases	Details the phases conducted during the batch and the status of each phase. Selecting a phase allows the user to view all parameters and values configured during the phase.
Trends	Trends can be configured to view process data during the batch
Comments	Any comments recorded against the batch whilst running will be visible
Alarm Log	Lists any alarms triggered whilst the batch was running
Audit Log	Lists all audited actions that were carried out during running of the batch

15.2 Export

Selecting the export icon allows the user to configure which aspects are included in the report. Once the export button is selected, a preview of the report will be displayed which can then be exported in pdf format to a location defined by the user.

Figure 86
Report configuration.

Select Sections For Export

\checkmark Parameters
\checkmark Comments

- Alarm Log
\checkmark Audit Log

Export

> Cancel

Selection

Description

The most basic report that can be exported, which exports a report with a mini trend of the process value for each parameter in addition to any alarms or comments linked to each parameter. This information will be included on all reports exported regardless of the selection.
Adds into the report the values set for all parameters in each phase of the batch. Will include set points, alarms, and advanced settings.

Adds into the report any comments linked to the batch.
Adds into the report a table of any alarms triggered during the batch.
Audit Log
Adds into the report a table of all audited actions during the batch.

16. Diagnostics and Troubleshooting

16.1 Diagnostics

The performance and diagnostics of the mPath Link system can be observed and monitored during use from the diagnostics screen located through the settings tab. This information is likely only to be used by Pall representatives when performing system checks.

Figure 87
Diagnostics screen

16.2 Trouble Shooting

Table 12

Issue / Error
Status ring is not static after 40 seconds
Pink light right upon start up
Control tower connection faulted
Loss of communication to unit
Loss of communication to Allegro XRS 25
unit

Troubleshooting

Issue - Control tower not booting properly.
Turn off power to control tower and leave powered off for 2 minutes due to retentive memory. Re-connect power and switch on control tower. If status ring does not remain static after 40 seconds, there may be an issue with the PLC license. Please contact Pall.
System error present from uncontrolled shut down.
Navigate to "Alarms" tab and scroll to find shutdown alarms. Press Acknowledge button.
Check network connections.
Check IP address and port configuration entered mPath Link is correct for the control tower.
Check that the CX number is entered correctly.
Press "Save" after editing or confirming IP addresses, port configuration and CX number in controltower setup.
If the connection remains faulted contact your IT department
to check the IP address of the control tower and mPath Link server computer.
Check the stat us of the OPC UA server. If communications are still lost to the unit check all connections are correct between the controltower and unit.
Repeat steps in 'Control tower connection faulted' step.
System alarm will be present.
If there is a "Comms Fault" ensure the Allegro XRS 25 unit is turned on and the communications cable is connected between controltower and Allegro XRS 25 unit.

	Navigate to the "Alarms" screen, scroll through the list, and acknowledge all Allegro XRS 25-unit status alarms. If communication status does not resume, shut down the control tower and Allegro XRS 25 unit. After 30 seconds power up the control tower followed by the Allegro XRS 25 unit. Clear the system error due to uncontrolled shut down as described above.
Input and output connections not sending readings to user interface	Ensure all input and output connections are connected securely to the control tower and are in the correct ports.
Input and output connections not reading correctly	Ensure all input and output connections are connected securely to the control tower in the correct ports. Perform calibration.
Loss ofon-screen functionality	Ifthe on-screen view displays control parameters shown with red X's and greyed out text, check the status of the OPC server and that all connections are correct. Ensure the control tower is showing as connected on the diagnostics page. Ensure the mPath Link Server is powered on and the software is operating.
Low pressure	There is insufficient inlet pressure to the gas mixing block. Pressure supplied should be 2 bar (29 psi) minimum.
Incorrect gas mixing	Ensure the correct gas lines are connected to the inlet and outlet portson the control tower. Ensure that the gas supply to control tower is the correct gas from the regulator. Re-calibration of the gas block may be required. Contact Pall.
Control tower will not power on	Ensure all electrical connections to the electrical supply are completed and that the appropriate provided power cables are used. For further support please contact units@pall.com.
Alarm present but unit deleted	If a unit was deleted before its alarms were acknowledged or cleared. A unit of the same type can be created to then clear any alarms through the Alarms tab.
Freezing of alarm screen	Ifthe alarm screen freezes the server may not be able to handle the read/write requests to update a large number of alarms as well as log data. Reduce the number of alarms displayed per page.
On screen keyboard does not appear on HMI or Windows devices	Through the Windows menu, navigate to Settings > Typing. Ensure the option "Show the touch keyboard when not in tablet mode and there's no keyboard attached" is set to on.

17. mPath Link Mobile Application

The mPath Link application is designed to be compatible across IOS and Android mobiles and tablets. If opened on a tablet, the mPath Link application will provide the exact same functionality as when opened on a desktop monitor. The mobile application, however, provides a reduced functionality set more relevant to the needs of a mobile user.

17.1 Install

The following installation instructions are based on an Android phone but are applicable to other IOS and Android devices.
17.1.1 Application Installation

With the mobile device, go to Play Store or App store and search for Ignition Perspective to install the Ignition Perspective App.

Figure 88
Ignition Perspective play store

Once installed, the application should appear on the mobile desktop.
Figure 89
Ignition Perspective installed

Open the application and tap " + " button to add the mPath Link application to the mobile. It is also recommended to remove the Perspective Demo by taping on three dots next to it and selecting "Remove Application (swipe right to remove on IOS)"

Figure 90
Adding mPath Link

Select Manually Input Gateway and type in Hostname including port. In this example, configuration has been made to connect to the mPath Link server located under 192.168.123.8 IP address and port 8088 (standard port used), although this may differ dependent on the server installation. Once the host is validated, the application can be selected.

The mPath Link server (Pall PC as standard) must be connected to a network accessible by the mobile device to connect.

Figure 91
Manual gateway input

Select mPath Link Mobile application from the list of available applications.
Figure 92
mPath Link mobile application selection

| mPathLink | Select Application |
| :--- | :--- | :--- |
| Pall Link Mobile SCADA Server for
 mPath Bioreactor Control Towers
 mPathLink Mobile application for mPath
 Bioreactor Control Towers | |
| mPathLink | |
| mPathLink SCADA Server for mPath | |
| Bioreactor Control Towers | |

Once the application is selected, it can be further configured by taping on three dots next to it.
Figure 93
Mobile application configuration

For ease of use, and accessibility, it is recommended to add the mPath Link Mobile application to Favorites or create Shortcut.

Figure 94
Mobile Favourites and Shortcut

Once configured, the application is ready to run on mobile device. Note that this process can be used to connect multiple mPath Link servers to the same mobile device by entering the IP addresses specific to the additional servers.

17.2 User Interface

As with desktop or tablet devices, the mobile application will display a status bar with the highest priority state displayed in addition to the login/logout function.

Figure 95
Mobile status bar.

Selecting the menu icon on the left of the status bar allows the user to view the connected units and navigate to different areas of the application. The side navigation bar displays the status of the connected units through the vertical-colored strip. With system selected, the user will be able to view an overview of the connected units, schedule, and alarms and with a unit selected, there will be the additional options of the process overview screen and calibration.

Figure 96
Mobile menu selected.

When system is selected from the side bar and the user navigates to the overview screen, a list of the connected units will be displayed along with the specific details. Upon selecting the unit, the user is navigated to an overview screen for that specific unit this can also be achieved by selecting the desired unit from the left side bar before selecting overview.

Figure 97
Mobile unit level overview screen.

=	OK	=				$\underset{\text { Logout }}{ }$
Home		Home				
	$\begin{gathered} \text { Start P1 End } \\ \sim \end{gathered}$	$\stackrel{\text { Start }}{\stackrel{\text { P1 }}{ }} \stackrel{\text { End }}{-}$				
Unit Name	Office Nano 2	- 30 Temperature				
Unit Type	iCellis Nano	(3) 30.				
Controller Name		8:11	8:15	8:19	$8: 23$	8:26
Controller Type	Tower Pumps	- $40-$ Dissolved Oxygen				
Current Phase	Production	o 30 20 $10-$ 0				
Batch	5 - control loop test	8:11	8:15	8:19	8:22	8:26
Total Duration	1.16:34:14					
Status	OK	$\begin{aligned} & \text { 옹 } 7.151 .10 \mathrm{pH} \\ & 7.05 \end{aligned}$				
			9:24	10:12	11:00	11:48
틀	II	\square Pr	ess Val	- S		
-				-		

The initial screen shows the breakdown of the unit detail and by using the buttons at the bottom of the screen, the user can comment on the batch in addition to pausing or stopping. The batch tracker bar at the top of the screen indicates the phase that is currently running.

Swiping to the right will brings the user to the mini trends which display process value and setpoint for temperature, dissolved oxygen, and pH .

17.2.2 Process

For a detailed view of unit specific parameters, the user can navigate to the process screen through the "hamburger menu" when a unit is selected from the side bar.

Figure 98
Mobile tabular process screen.

工	OK	$\underset{\text { Logout }}{8}$
Process: Office Nano 2		
Primary $0.00 \mathrm{~mL} / \mathrm{min}$ ∇ \square		
Critical Alarms	Warning Alarms	All Control Modules
Gas Outlet Objects		
- Primary Gas Outlet		
Input/Output Objects		
N2		
Air		
CO2		
02		
pH		
Nano Aber Biomass		
Nano Aber Capacitance		

The default view will show all control modules although the user can filter to show alarming parameters by selecting either critical or warning alarm buttons. Parameters can be selected from the list which will then display the process overview symbol which functions the same as the desktop application.

Selecting the process overview symbol allows the user view and configure the selected parameter where the back button returns the user to the process screen view.

Figure 99
Mobile process overview screens.

Tab

$\frac{1 \text { - Overview }}{2 \text { - Trends }}$
3 - Alarms
4 - Notes

Description

Slider bar shows setpoint and PV. User can edit the set point and the control mode.
A mini trend with tick boxes to select between process value and set point. Output, and gases will
have the additional options output, total and feedback to select from.
Critical/warning low and high alarm set points can be configured in addition to disabling or
acknowledging an alarm.
Notes can be added to parameters either relating to general or the batch.
*Primary or secondary gas objects will also have a tab for a graphical depiction of the gas flow path.

17.2.3 Batch Schedule

Using the menu, the user can navigate to the schedule tab to view any scheduled batches. Note that this is a view only feature.

The user will be able to view batch details including, batch name, recipe name, start/end date, and status. Selecting the filter icon allows the user to filter the view for ease of use based on unit, user, and start/end date.

17.2.4 Alarms

Navigating to the alarms tab will display all alarms that are present in the system displayed in chronological order, with the alarm border indicating the severity of the alarm. When the alarm window button (in the top right of each alarm box) is touched, the available alarm controls for that parameter are shown. The user will then be able to disable and/or acknowledge the selected alarm. Selecting the filter icon allows the user to filter the display by IO or system alarm, state, unit and by free text. Selecting the window button in the top right then hides the additional parameters to return to the original view.

Figure 100
Mobile alarms screen.

| Alarms: Office Nano 2 |
| :--- | :--- |
| Filters Active: System ON - IO ON |
| All States |

18. Cleaning and Maintenance

18.1 Cleaning

The ingress protection rating of the mPath control tower is IP 54. To clean the mPath unit control tower wipe down the instrument externally with a non-fiber releasing IPA wipe or IPA spray.

18.2 Preventive Maintenance

Pall provides maintenance and repairs for all unit systems, including preventive maintenance services. Please consult datasheet USD 3078: Pall Single-Use Unit Systems Support and Maintenance Services on www.pall.com or contact your Pall sales representative. To keep the unit system up and running a minimum of one preventive maintenance a year is recommended.

18.3 Critical Spare Parts

Table 13
Critical spare parts

Part Number	Description
KMPATHLOAD	mPath unit controltower loadcell hanger
KMPATHCLIP	mPath unit control clip for screen
KMPATHCBLXRS	Communication cable kit Allegro XRS 25 unit
KMPATHCBLICLN	Communication cable kit for iCELLis Nano unit

19. End of Life Disposal

To dispose of the mPath unit control tower, the relevant local legal regulations must be observed. Within the European Community, the disposal of electrical devices is regulated by national regulations based on EU directive 2002/96/EC pertaining to waste electrical and electronic equipment (WEEE). According to these regulations, any device supplied after August 13, 2005, in the business-to-business sphere (to which this product is assigned), may no longer be disposed of in municipal or domestic waste. To document this, they have been marked with the following symbol:

Please visit our website for more information and local instructions on disposing of the product at https://www.pall.com/en/about-pall/corporate-sustainability/weee-compliance.html.

20. Technical Specifications Summary

20.1 mPath Control Tower

Table 14
mPath control tower technical specifications.

Models	KMPATHBRXPS2P3 KMPATHBRXPS2PO KMPATHBRXPSOP3 KMPATHBRXPSOPO -	mPath controltower, PreSens pH/DO, pumps $\times 3$ mPath controltower, PreSens pH/DO, pumps $\times 0$ mPath controltower, PreSens $\times 0$, pumps $\times 3$ mPath controltower, PreSens $\times 0$, pumps $\times 0$
Facility	Dimensions ($\mathrm{W} \times \mathrm{D} \times \mathrm{H}$)	$230 \times 600 \times 450 \mathrm{~mm}$ (590 mm with hangers attached)
	Weight kg	20 kg
	Materials of construction	Polymer, stainless steel, aluminum
	Electrical supply	Voltage: Automatically adjusted between 100-240 V AC Input Frequency: $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$
	Electrical connection	Supplied with US, EU and UK cables
Utilities	Power consumption	360 W maximum
	Gas supply	$2.0-6.0 \mathrm{bar} / 29-87 \mathrm{psi}$
	Control architecture	Beckhoff* PLC, SBC MPath Link SCADA
	Operating system	Pall Corporation SCADA mPath Link server: Microsoft Windows 10 Pro Control Tower: Microsoft Windows Embedded Compact Oracle : MSSQL ${ }^{*}$ and Java*
Control System	Automation design	Developed and tested in accordance with GAMP 5
	Electronic records and electronic signatures	Compatible with FDA 21 CFR Part 11 \& EudraLex Annex 11
	Network compatibility	Integrated OPC-UA server
	Data export / communication	USB, OPC-UA over Ethernet
	Remote operation	Yes, support for remote desktop and mobile clients through mPath Link SCADA software
	Standalone operation	No, requires mPath Link SCADA software for operation
	Gas connections	6 mm push to connect fittings 6 mm OD pneumatic tubing
	Gas flow control	6 TMFCs
	Input gases supported	$\mathrm{N}_{2}, \mathrm{O}_{2}$, air and CO_{2}
Gas	Pressure regulation	Onboard preset regulators, inputs from 2.5 bar (36.3 psi) - 6.0 bar (87 psi) accepted

20.2 mPath Link Server

Item	Specification
Memory (RAM)	16 GB
CPU	$1 \times$ INTEL $\mathrm{i}-8100$ 3.60Ghz
Storage	ITB
Software	Ignition, Windows 10 LTSC, MSSQLStandard

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

21. Technical Assistance and Important Contact Details

The mPath control tower is manufactured by:
Pall Portsmouth for Pall international SARL, Avenue de Tivoli 3, 1700 Fribourg Switzerland.

For technical assistance, please contact:
Pall Equipment Support Hotline
1-855-920-PALL (1-855-920-7255) USA \& Canada
00800 Pall TECH (008007255 8324) EMEA
Or

- Contact your local Pall representative
- Visit the support section on www.pall.com
- E-mail your enquiry to lapplsupport@pall.com

22. Ap pendix A: Abbreviations

Term	Meaning
DO	Dissolved Oxygen
1/O	Inputs and Outputs
IFU	Instructions for use
IPA	Isopropyl alcohol
MSDS	Material safety data sheet
pH	Potential of Hydrogen
SCADA	Supervisory Control and Data Acquisition
UI	User Interface
CSA	Canadian Standards Association
HMI	Human-Machine Interface
Hz	Hertz
ID	Inner Diameter
OD	Outer Diameter
PID	Proportional Integral Derivative
PV	Process Variable
rpm	Revolutions per minute
RTD	Resistance Temperature Detector
SCADA	Supervisory Control and Data Acquisition Software
slpm	Standard Litres per Minute
SP	Set point
TMFC	Thermal Mass Flow Control tower
\checkmark	Volts
$\underline{W \times D \times H}$	$\underline{\text { Width } \times \text { Depth } \times \text { Height }}$

23. Appendix B: Connecting to Additional Networked Computers and Tablets

To connect to additional networked devices, the mPath Link system must be connected to a local area network. If the air-gapped approach has been used, no additional viewing platforms can be used other than the mPath Link server supplied.

If the mPath Link server supplied is connected to a local area network or a wider area network which allows traffic, enter the IP address of the mPath Link server into the browser of your networked device.

23.1 Computers

The mPath Link page will open giving the user the options on how to download the SCADA screens.

- Press launch to download the SCADA screens.
- Log in using the details created within user management.

Figure 48
Mobile link page.

23.2 Tablets

- The login page of the SCADA screen will open.
- Log in using the details created within user management.

24. Appendix C: I/O List

Full I/O list and the default I/O (ticked) in mPath Link as per unit.

1/O	Description	Allegro XRS 25	Xpansion Multiplate	iCELLis Nano
Air	6 mm gas supply to primary outlet.	\checkmark	\checkmark	\checkmark
Air Secondary	6 mm gas supply to secondary outlet.			
Balance Load Cell	M12, A-coded, 5-way, female connector, 24 V supply, 0-20 mA input. Units: grams			
Balance Load Cell Feed	M12, A-coded, 5-way, female connector, 24 V supply, 0-20 mA input. Units: grams/second			
Biomass	M12, A-coded, 5-way, female connector, $0-20 \mathrm{~mA}$.			\checkmark
Biomass Growth Rate	M12, A-coded, 5-way, female connector, 0-20 mA.			
Aber Biomass				\checkmark
CO_{2}	6 mm gas supply to primary outlet.	\checkmark	\checkmark	\checkmark
CO_{2} Secondary	6 mm gas supply to secondary outlet.			
DO	Dissolved oxygen fibre optic	\checkmark	\checkmark	
Electrochemical CO_{2}	Electrochemical CO_{2}			
Electrochemical DO	Electrochemical DO			
Hamilton Digital DO	Digital DO			\checkmark
Electrochemical pH	Electrochemical pH			\checkmark
Filter Heater	M12, A-coded, 5-way, female connector. $0-24 \mathrm{~V}$			
Hanging Load Cell 1 Feed	Hanging load cell feed measured in g/s			
Hanging Load Cell 1 Mass	Hanging load cell mass measured in g.	\checkmark	\checkmark	
Hanging Load Cell 2 Feed	$\underline{\text { Hanging load cell feed measured in } \mathrm{g} / \mathrm{s}}$			
Hanging Load Cell 2 Mass	Hanging load cell mass measured in g.	\checkmark	\checkmark	
Hanging Load Cell 3 Feed	Hanging load cell feed measured in g/s			
Hanging Load Cell 3 Mass	Hanging load cell mass measured in g.	\checkmark	\checkmark	
Level Sensor 1	M12, A-coded, 5-way, female connector. $1 \times 0-20 \mathrm{~mA}$ input; $1 \times 24 \mathrm{~V}$ digital input			
Level Sensor 2	M12, A-coded, 5-way, female connector. $1 \times 0-20 \mathrm{~mA}$ input; $1 \times 24 \mathrm{~V}$ digital input $1 \times 24 \mathrm{~V}$ digital input			

MAG Stirrer	2Mag stirrer plate.		\checkmark	
N_{2}	6 mm Gas supply to primary outlet.	\checkmark	\checkmark	\checkmark
Nano Filter Heater	0-24 V			\checkmark
	Internal connection.			
Nano MAG Stirrer	Measured in rpm			\checkmark
	Internal connection.			
Nano Peltier	Measured in \%.			\checkmark
Nano Pump 1	Pump speed measured in rpm.			\checkmark
Nano Pump 2	Pump speed measured in rpm.			\checkmark
Nano Pump 3	Pump speed measured in rpm.			\checkmark
	Internal connection.			
Nano Resistor	Degrees C.			\checkmark
Nano Temperature	PT 100 measured in Degrees C.			\checkmark
O_{2}	6 mm Gas supply to primary outlet.	\checkmark	\checkmark	\checkmark
Peltier	M12, T-coded, 4-way, female.			
pH	$\underline{\mathrm{pH}}$ fibre optic	\checkmark	\checkmark	
	M12, A-coded, 5-way, female.			
Pressure Sensor Current	0-20 mA			
	M12, A-coded, 5-way, female.			
$\underline{\text { Pressure Sensor Voltage }}$	0-10 V			
	Outlet gas flow of all primary gas flows.			
Primary	6 mm	\checkmark	\checkmark	\checkmark
Pump 1	Pump on mPath controltower. Measured in rpm	\checkmark		
	Pump on mPath controltower.			
Pump 2	Measured in rpm	\checkmark		
	Pump on mPath controltower.			
Pump 3	Measured in rpm	\checkmark		
	Outlet gas flow of both secondary gas flows.			
Secondary	6 mm			
Stirrer	PadReactor Mini unit paddle stirrer. Measured in rpm.			
Temperature	PT 100 measured in Degrees C.	\checkmark	\checkmark	
Allegro XRS Agitation	Agitation to Allegro XRS 25 unit measured in CPM.	\checkmark		
	M12, A-coded, 8-way, female. DO(24V); DI (24V); 0V; 0-10V In; 0-20mA In; 0-10V			
User configurable I/O x 3	Out; 0-20mA Out			

25. Appendix D: User Management (Default List)

Operator

Alarm Edit \square	Configuration View \checkmark	Recipe Create \square	Settings Edit \square
Alarm View	Event Log \square	Recipe Modify Existing \square	Settings View \square
Batch Modify Schedule \square	Export \square	Recipe Modify New \square	Simulation \square
Batch View \square	Notes \square	Recipe View	System Settings View Edit \square
Calibration \downarrow	Process Edit \square	Reports	Trends \square
Configuration Edit \square	Process View \square	Setpoint \square	User \square

Supervisor

Alarm Edit \downarrow	Configuration View \downarrow	Recipe Create ∇	Settings Edit ∇
Alarm View	Event $\log \nabla$	Recipe Modify Existing ∇	Settings View
Batch Modify Schedule \square	Export \square	Recipe Modify New \downarrow	Simulation \square
Batch View \square	Notes \square	Recipe View \square	System Settings View Edit \square
Calibration \square	Process Edit \square	Reports \square	Trends \square
Configuration Edit	Process View \square	Setpoint \downarrow	User ∇

Administrator

Alarm Edit \square	Configuration View \downarrow	Recipe Create \square	Settings Edit \downarrow
Alarm View	Event $\log \square$	Recipe Modify Existing \square	Settings View \downarrow
Batch Modify Schedule \square	Export \square	Recipe Modify New \downarrow	Simulation \square
Batch View	Notes \square	Recipe View \downarrow	System Settings View Edit \square
Calibration	Process Edit \square	Reports \square	Trends \square
Configuration Edit \downarrow	Process View \downarrow	Setpoint \square	User \square

26. Appendix E: Alarms

Alarm
Gas handling module (GHM) Status Alarm
GHM Air Inlet Pressure Alarm Critical low (Units are mBar)
GHM Air Inlet Pressure Alarm Warning Low
GHM Air Inlet Pressure Alarm Warning high
GHM Air Inlet Pressure Alarm Critical high
GHM O2 Inlet Pressure Alarm Critical low
GHM O2 Inlet Pressure Alarm Warning Low
GHM O2 Inlet Pressure Alarm Warning High
GHM O2 Inlet Pressure Alarm Critical high
GHM CO2 Inlet Pressure Alarm Critical low
GHM CO2 Inlet Pressure Alarm Warning Low
GHM CO2 Inlet Pressure Alarm Warning High

Description

Presens Module 2 status alarm

Presens Module 2 status alarm

Presens Module 2 - Open Circuit
Presens Module 2 - Overrange

PALL PALL CORPORATION

Visit us on the Web at www.pall.com/Biotech Contact us at www.pall.com/contact

Corporate Headquarters

Port Washington, NY, USA
+1-800-717-7255 toll free (USA)
+1-516-484-5400 phone

European Headquarters

Fribourg, Switzerland
+41 (0)26350 5300 phone

Asia-Pacific Headquarters

Singapore
+65 63896500 phone

Pall Corporation has offices and plants throughout the world. To locate the Pall office or distributor nearest you, visit www. pall.com/contact.

The information provided in this literature was reviewed for accuracy at the time of publication. Product data may be subject to change without notice. For current information consult your local Pall distributor orcontact Pall directly.

IF APPLICABLE Please contact Pall Corporation to verify that the product conforms to your national legislation and/or regional regulatory requirements for water and food contact use.
© Copyright 2021, Pall Corporation. Paldill , Allegro, iCELLis, mPath and Xpansion are trademarks of Pall Corporation. ® Indicates a trademark registered in the USA *Aber Instruments Ltd, Beckhoff is a trademark and brand of Hans Beckhoff, Verl 33415, GERMANY. Intel, Ignition Inductive Automation LLC, Mic rosoft, MSSQL, Oracle, and Java are trademarks of Oracle, Watson-Marlow Limited, 2mag TM of Florida Scientific Services, Inc. DBA 2magUSA Corporation.

[^0]: 2. Selecting "Calibrate" will then prompt the user to place the pH probe in a pH 7 solution.
