

Pall Schumalith® Filter Elements

Description

Pall **Schumalith** filter elements are manufactured from a porous, ceramically bonded silicon carbide filter media that has a high mechanical strength.

This ceramic filter material is distinguished by its excellent thermal resistance as well as thermal shock resistance. For this reason **Schumalith** filter elements are well suited for the filtration of hot fluids with fast temperature changes. The high performing **Schumalith** filter elements are mainly used for high temperature applications.

Applications

• Particle filtration of liquids Filtration of food basics

Particle filtration of gases
Gas analysing, devices, filtration of hot gases

Coalescer for oil aerosols in hot gases

Chemical Resistance⁴

Schumalith filter elements are resistant against acids, saline solutions and organic solvents, liquid or gaseous. They are not resistant to hydrofluoric acid. **Schumalith** filter elements are resistant up to pH 10 in the alkaline range.

⁴ As end use conditions can vary, it is the users responsibility to verify compatibility with their specific use conditions.

Technical Information

Schumalith (SL)	5	10	20	30	40
Filtration Grade of Liquids	<1 µm	5 μm	20 μm	30 µm	40 µm
Filtration Grade of Gases	<1 µm	2 μm	3 µm	6 µm	10 μm
Porosity	35 %	37 %	38 %	35 %	35 %
Material Density	1.9 g/cm ³	1.9 g/cm ³	1.85 g/cm ³	1.9 g/cm³	1.8 g/cm ³
Specific Permeability ¹	6 10 ⁻¹³ m ²	30 10 ⁻¹³ m ²	105 10 ⁻¹³ m ²	235 10 ⁻¹³ m ²	375 10 ⁻¹³ m ²
Bending Strength ²	>25 MPa	>30 MPa	>20 MPa	>15 MPa	>8 MPa
Maximum Temperature Resistance ³	1000 °C	1000 °C	1000 °C	1000 °C	1000 °C
Thermal Expansion Co-efficient (25 - 1000 °C)	5.0 10 ⁻⁶ /K	5.0 10 ⁻⁶ /K	5.0 10 ⁻⁶ /K	5.2 10 ⁻⁶ /K	5.2 10 ⁻⁶ /K
Dimensions (Do / Di)	70 / 40 mm	70 / 40 mm	70 / 40 mm	70 / 40 mm	60 / 30 mm

¹ Calculated from Differential Pressure AIR

² O-Ring strength, compression

³ Depending upon operating conditions

Flow vs Differential Pressure

Differential Pressure for Air Flow

Differential Pressure for Water Flow 8 T = 20 °C Differential Pressure (kPa) 6 4 75 SL 20 2 **SL 30 SL 40** 0 2 6 8 10 Face Velocity (m/h)

General Information

- Machining is possible using diamond tools.
- Elements can be glued using commerical or special ceramic glues.
- Careful consideration should be taken regarding operating temperature and chemical resistance.

Ordering Information

Part Number	SL	Туре	Do / Di (mm)	Length (mm)	Area (m²)	Weight (kg)
89582110	Cylinder	20	30 / 15	135	0.013	0.13
89452195		5	40 / 20	135	0.13	0.24
88297200		10	40 / 20	135	0.13	0.24
89452091		20	40 / 20	135	0.13	0.25
88143500		5	50 / 20	135	0.16	0.41
89450934		10	50 / 20	135	0.16	0.41
88033400		20	50 / 20	135	0.16	0.42
88143900		5	70 / 40	1000	0.22	4.8
88173200		10	70 / 40	1000	0.22	4.8
89581466		20	70 / 40	1000	0.22	4.8
89580301		30	70 / 40	1000	0.22	4.8
88183900		40	70 / 40	1000	0.22	4.8
89580701		5	60 / 40	1000	0.19	2.9
88217700		20	60 / 40	1000	0.19	2.9
89260475	Candle 5	20 KK	60 / 40	1500	0.28	4.6
89452006		20 KK pin	60 / 40	1500	0.28	4.6

⁵ Semi-spherical head

Please contact Pall for enquiries relating to dimensions not specified above.

Pall Industrial

New York - USA +1 516 484 3600 telephone +1 888 333 7255 toll free +1 516 484 6247 fax

Portsmouth - UK +44 (0)23 9230 3303 telephone +44 (0)23 9230 2507 fax

Visit us on the Web at www.pall.com

Pall Corporation has offices and plants throughout the world. For Pall representatives in your area, please go to www.pall.com/corporate_contact.asp

Please contact Pall Corporation for product applicability to specific National legislation and/or Regional Regulatory requirements for water and food contact use.

Because of technological developments related to the products, systems, and/or services described herein, the data and procedures are subject to change without notice. Please consult your Pall representative or visit www.pall.com to verify that this information remains valid.

© Copyright 2008, Pall Corporation. Pall, (ALL), and Schumalith are trademarks of Pall Corporation. ® Indicates a trademark registered in the USA. *Filtration. Separation. Solution.sm* is a service mark of Pall Corporation.