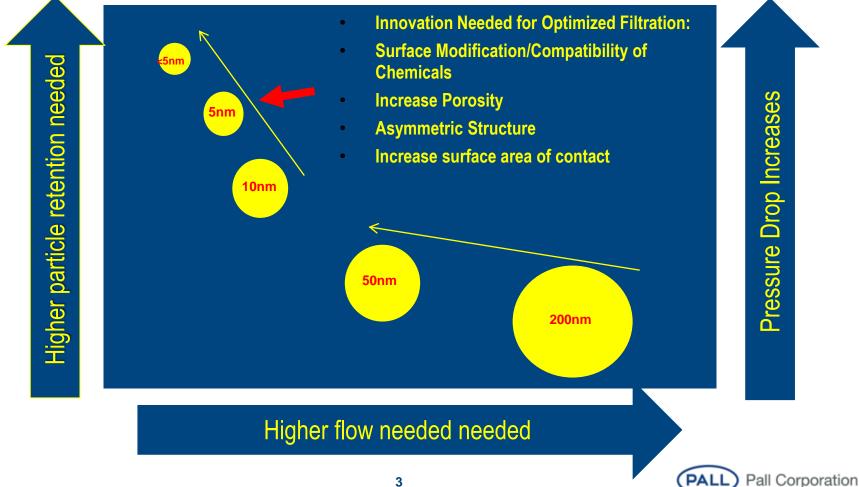


Advanced Contamination Control using Novel Polyarylsulfone Membrane Technology

Patrick Connor (<u>patrick_connor@pall.com</u>, 516-801-9249), Rao Varanasi, Lawrence Johnson, Jian Tan, David Huang, Tony Shucosky, Katsuhiko Tokuno, *Pall Corporation* Archita Sengupta, *Intel Corporation* Presented at Surface Preparation and Cleaning Conference 2016 ^{© 2016 Pall Corporation} Santa Clara, CA

Outline

- Background
- Development of Evaluation Program
- Test Program and Results
- Supporting Fab Application Results
- Assessment of Results and Conclusions
- Next Steps
- Acknowledgments



Background: Rationale for Study

Filtration must keep up with "Paradigm Shift" in Defect Tolerance for Next generation Technology Nodes Customized Filtration is needed to Aggressive Chemistry/Processes

Innovation needed for <=5nm Metals/Particles/Organics/NVR removal for next generation need</p>

PAL

Core Membrane Properties: PTFE and HAPAS

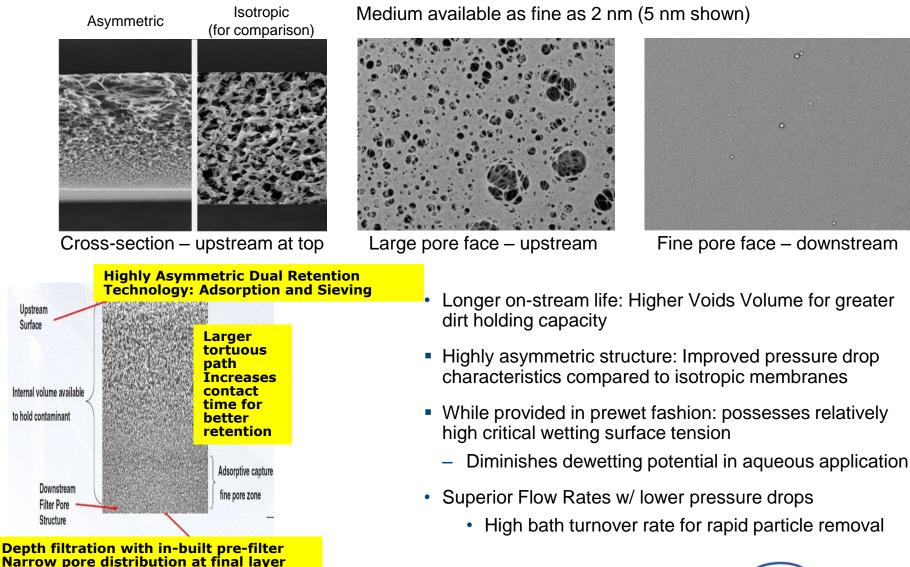
PTFE vs HAPS comparison						
$(CF_2 - CF_2)_n$	PROS	CONS				
F F 	Chemically most inert	High unit cost				
	High Temperature Resistance (185°C)	Most expensive surface modification				
F F PTFE	High Purity	High temperature aggressive service requires special package design				
(PFOA free)	Primary retention by surface size exclusion	Minimal depth capture, surface loading only				
	Long term stability	Typically low flux rates				
10	Available semi-phobic	Completely to semi-phobic				
1999 - 1999 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -	Aggressive chemistry application	Disposability an isue in some countries				
[O-Ø-C(CH ₃) ₂ - Ø-O-Ø-SO ₂ -Ø] _n -⟨○)- ^µ / ₁ -⟨○)⟨○⟩-⟨○⟩	Good chemical resistance in aqueous chemistries pH 1 -14	Limited solvent and conc acid, oxidizer resistance				
	Dual retention mechanisms: mechanical sieve final filter with integral tortuous path prefilter	Packaging material may limit thermal or long term chemical resistance				
	Highest flux rate					
HAPAS Highly Asymmetric Polyarylsulfone	Better Cost of Ownership as alternative for non- aggressive chemistry					
	High surface energy w/o surface modification – helps wetting of medium					
	Good temperature resistance (90°C)					
Distance in the second second	High dirt holding capacity					

The present study was undertaken to explore the suitability of a filter employing **highly asymmetric polyaryIsulfone** ("HAPAS") medium with other components of high density polyethylene (HDPE) in a variety of aggressive acids, bases, and blends

• The 5 nm rated Pall Ultipleat[®] SP DR product was the model chosen for evaluation

Considering HAPAS vs. PTFE for Critical Filtration

- The results show that a next-generation filter containing HAPAS medium has applicability in a wide variety of dilute and aggressive chemicals
 - But how does it compare to an all-perfluoropolymeric filter? The table below considers various characteristics:


Property	HAPAS	PTFE
Finest available rating	2 nm	5 nm
Flow, psid/GPM-10" equiv.	0.7	0.75 - 1.0
Unit Cost	Х	3X - 7X
Compatibility	Acceptable for a wide range of chemicals, up to 70°C	Acceptable across most chemicals, up to 185°C

 The Ultipleat SP DR product employing HAPAS medium provides a suitable alternative on the basis of several characteristics

capture particles by size exclusion

Advantages of Highly Asymmetric Polyarylsulfone ("HAPAS") Filtration Medium

Pall Corporation

Planned Program of Study

Identify suitable chemistries and conditions to use Develop testing program for flat sheet materials Conduct soaks with periodic sample removal for evaluation

Assess flat sheet data to better define device testing

Develop test program for devices Conduct soaks or flow tests with periodic sample removal for evaluation

Testing in actual application environment with collection of performance data

Assess and interpret all data to develop conclusions on compatibility

Targeting Candidate Chemistries and Conditions to Use

Chemical / Chemistry	Reason for Interest	Conditions	
Hydrogen Peroxide (H_2O_2)	Occurs widely in cleaning, etching, and stripping chemistries	5% - 30%, room temperature (R.T.)	
Tetramethylammonium hydroxide ("TMAH")	Widely used in cleaning, etching, and PR developer chemistries	2% - 25%, R.T.	
Hydrofluoric Acid (HF)	Widely used in cleaning and etching, sometimes at high conc.	49%, R.T.	
Isopropanol ("IPA")	Frequent use in drying; model of organic content	100%, R.T and 70°C	
SC1, SC2 (ammonia or HCl + $H_2O_2 + H_2O$)	Aggressive blends, often used at elevated temperatures	SC1: 1:1:5; SC2: 1:5:10, R.T. (sheet), 60°C (device)	
Hydrochloric Acid (HCI)	Strong acid model; used in blends	10% - 37%, R.T.	
DI Water	Cleaning agent	100%, 70°C	
Proprietary Blends	Used for BEOL cleaning / stripping; indicator for organics	Specialized	

- Samples of HAPAS medium were produced in coupon and disk forms; samples of HDPE support material were produced as coupons
- Collections of disks and coupons were immersed in various chemicals selected
 - Sealed in vessel and subjected to elevated temperature, where applicable
- Samples removed periodically and subjected to physical and chemical testing
 - Tensile measurements of coupons via Dynamic Mechanical Analyzer ("DMA")
 - Flow rate measurement, using water, at defined ΔP , for disks
 - FTIR spectra of coupons obtained
- Where applicable and suitable, HAPAS medium exhibiting retention of other properties subjected to 5 nm gold nanoparticle ("GNP") retention testing
 - Generally restricted to fresh HAPAS and longer duration soaks

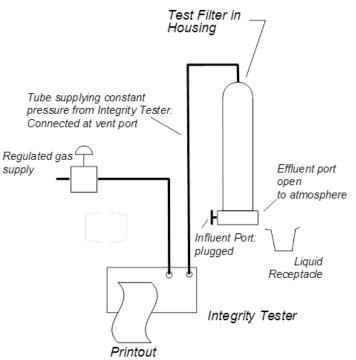
Summary of Tensile, Flow, and IR Spectroscopic Test Results For Flat Sheet Materials—Three Month Exposure

Media 5 nm HAPAS					S/D layer			
Chemical	Conc	temp	Water flow	Retention (LRV at 5 nm)	Mechanical Property (DMA)	Chemical Composition (FTIR)	Mechanical Property (DMA)	Chemical Composition (FTIR)
нсі	37%	20C	\leftrightarrow	\checkmark	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
	20%		\leftrightarrow		\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
	10%		\leftrightarrow	\leftrightarrow	\leftrightarrow	↔	\leftrightarrow	\leftrightarrow
H2O2 H2O2 30% 20% 10% 5%	30%	200	<u>^</u>		\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
	20%		$\uparrow \uparrow$	$\downarrow\downarrow$	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
	10%	20C	$\uparrow\uparrow$	$\downarrow\downarrow$	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
	5%	1	<u>^</u>	$\downarrow\downarrow$	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
SC1	*	20C	↔	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
*NH ₄ OH:H ₂ O	D₂:H20 – 1:	1:5						
SC2	+	20C	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
†HCl:H₂O₂:H	20 – 1:5:10)						
IPA	100%	20C	\leftrightarrow	\leftrightarrow	\leftrightarrow	↔	\leftrightarrow	\leftrightarrow
IPA	100%	70C	1	↓	¥	\leftrightarrow	↓	\leftrightarrow
HF	49%	20C	↔	↓	\leftrightarrow	↔	\leftrightarrow	\leftrightarrow
	25%		↔	↔	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
ТМАН	10%	20C	\leftrightarrow	\leftrightarrow		\leftrightarrow	\leftrightarrow	\leftrightarrow
	2%	200	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
🔸 🛧 significant change 🛛 🗸		↓ ↑	slight change	\leftrightarrow	no significant chang	e		

Results suggest compatibility with most chemicals used

٠

Ì

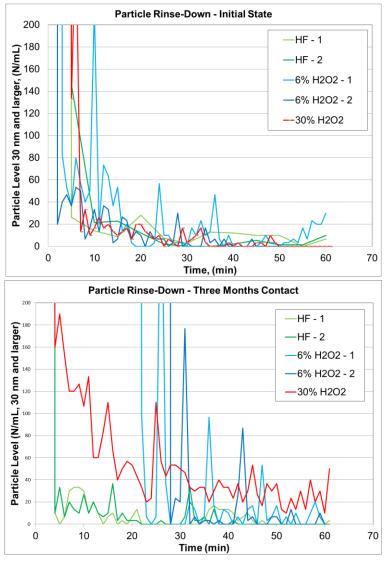

•

Assessment of Flat Sheet Results and Continuing on to Device Testing

- The decision made to soak actual filters in <u>the most concentrated version of</u> <u>chemical</u>
 - Including 30% H_2O_2 , essentially as a negative control
- Expansion of program to test in (1:1:5) SC1 and (1:5:10) SC2 at 60°C with flow
- Evaluation plan:
 - Collect baseline data on filters
 - Non-destructive integrity test
 - ΔP vs. flow rate (using water)
 - Rinse test in water for particles
 - Soak filters for periods up to 3 months with periodic repeat of tests
 - Post-soak check of robustness via pulsation testing in water

Schematic of Integrity Test Set-up

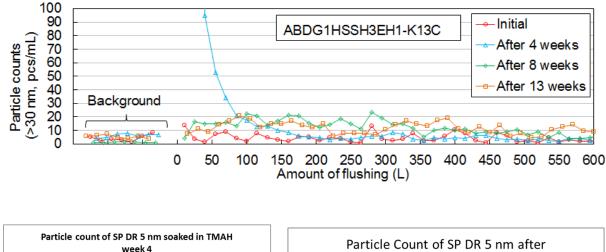
Integrity Test and Pressure Drop *vs.* Flow Rate with Respect to Time for Target Chemicals

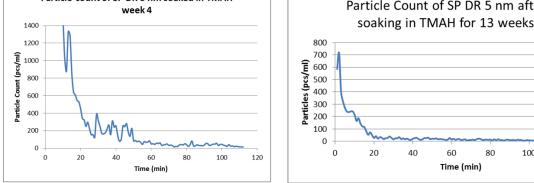


Diffusive flow and pressure drop testing revealed the following:

- For most chemicals, parameter changes within acceptable limits
 - Suggests compatibility over soak time used
 - **30%** H_2O_2 sample shows integrity loss at 3 mo, and major drop in ΔP at 8 wk.
 - Some affect—*limited compatibility*
- Loss of integrity and ∆P drop at 4 wk for 70°C IPA
 - This suggests incompatibility

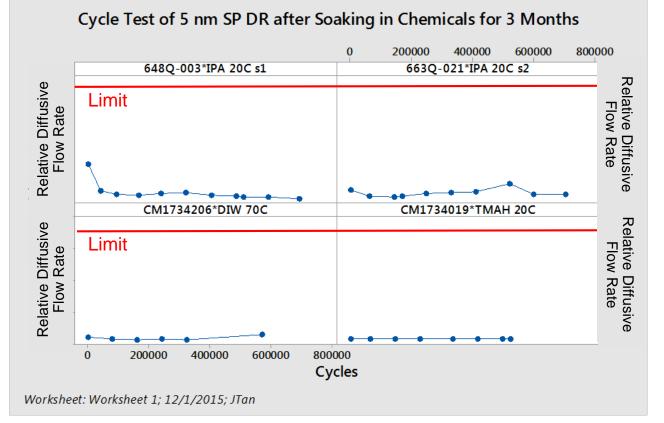
Comparative Initial and Post-Contact "Rinse-in" Results in DIW for Selected Cases


Particle rinse tests in water pre- and post-soak can be used to evaluate potential changes resulting from contact:


- Filters soaked in 49% HF and 6% H₂O₂ recover background levels
 - Suggests minimal effect from long-term contact, and compatibility with these chemicals
- By comparison, filter soaked in 30% H₂O₂ exhibits relatively high level after 60 minute rinse
 - Suggests limited compatibility

Comparative Initial and Post-Contact "Rinse-in" Results in DIW for Selected Cases, cont.

- Filter contacted with flowing **SC2** (1:5:10) at 60°C exhibits minimal change in transient particles over time
- Filter soaked in TMAH appears to **achieve low** particle level quicker after longer soak duration


Results confirm absence of degradation of the filter in these chemistries and confirm compatibility

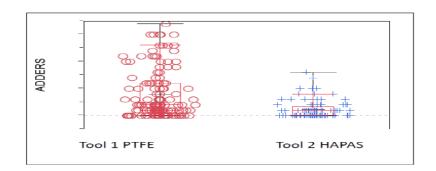
100

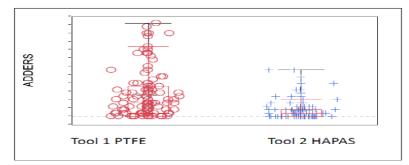
120

Durability Tests on IPA (20°C) and TMAH Soaked Filters

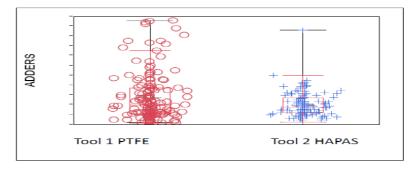
This test provides supplemental information on post-soak filter behavior by subjecting them to additional, cyclic stress

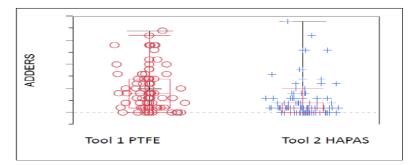
 Stressed filters show no loss of integrity even after over 500k cycles, further confirming compatibility in R.T. IPA and 25% TMAH




Side by Side Comparison of PTFE vs HAPAS performance

First 30 days Defect monitor data at IDM Advance technology Node WE tools


TOTAL_ADDERS: Chemistry A: PTFE vs HAPAS


TOTAL_ADDERS: Chemistry C: PTFE vs HAPAS

TOTAL_ADDERS: Chemistry B: PTFE vs HAPAS

TOTAL_ADDERS: Chemistry D: PTFE vs HAPAS

(intel)

Data Reference: Ryan Mackiewicz, Intel Corporation.

- Test program was effective in showing differences in behavior of both components and complete filters tested in various chemicals
 - Flat sheet tests were useful for guiding device testing
- Test Results show that the Ultipleat SP DR product with HAPAS medium can be applied in a variety of WEC chemicals, including concentrated versions of TMAH, HF, and HCI, dilute H₂O₂, and IPA at room temperature, and SC1 and SC2 at 60°C
 - The product exhibited incompatibility with 30% H_2O_2 , and with IPA at 70°C
- Lab test results are supplemented by real time field qualification data on advanced technology node tools showing value of employing the HAPAS product in actual WEC application.

Overall, we find that a filter product containing HAPAS medium indeed provides a very useful technically viable and lower cost-of-ownership alternative to all-perfluoropolymeric filters for a wide range of applications

Next Steps

- Expansion of program to broader array of specialty chemicals and conditions
 - Especially to include more blends, including organics
 - Extension to higher temperatures
- "Fine-tuning" of testing
 - Exploration of additional evaluation methodologies
 - Shorter duration-increased interval testing for certain chemicals
- Incorporation of more flow-based tests

Acknowledgements

- PALL: Thank you so much to Ibrahim Mohamed-Ali, Mai Nguyen, Kei Lau, and Pauline Adejo of the Port Washington team, Virgil Briggs, Mike Gofkowski, Shawn Hubbard, Yi Wang, Valerie Pritchard, John Tomancik, and Dick Stoyell of the Cortland team, and Shusaku Daikoku, Mitsutoshi Nakagawa, Tomoyuki Takakura, and Shuichi Tsuzuki of the Tsukuba team for all the extensive lab work and additional assistance provided during the project
- Intel: Thank you so much to Ryan Mackiewicz And Ameya Bapat for providing field data

Thank you for listening! ③

