プロファイルUP

PFS911JPi

各種コーティング液、懸濁液、高粘度流体のろ過

厚みのあるメディアによるウルチプリーツ構造 デプスとプリーツ両方の利点を併せ持つ 画期的フィルター

"プロファイルUP"は、全く新しい発想で開発されたプリーツ構造により、高流量化を実現したオールポリプロピレン製フィルターカートリッジです。厚みのあるメディアとウルチプリーツ構造が、デプスとプリーツ両タイプの利点を併せ持つ画期的なフィルターを誕生させました。

従来、高粘度流体のろ過は難しく、プリーツフィルターではプリーツがつぶれてろ過寿命が短くなり、デプスフィルターでは差圧が高いために設備が大きくなる、という問題がありました。

"プロファイルUP"は、これらの問題を同時に解決した、各種コーティング液、懸濁液、高粘度流体のる過に最適なフィルターです。差圧は最大でデプスフィルターの1/15、プリーツフィルターの1/2まで小さくなるため、設備を小型化し、ろ過時間を大幅に短縮します。さらに、その厚みのあるメディアにより、効果的なゲルろ過を行います。

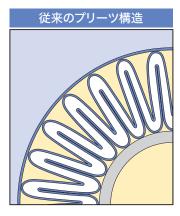
独創的なフィルターメディア構造と ろ過のメカニズム

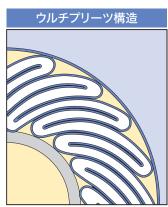
フィルターメディアの外側部分は、内側に行くにつれて連続的に 小さい孔径になっているため、効果的な前ろ過を行い、ろ過寿命 を長くします。また、カートリッジの内側部分は、変化のない均 一な孔径を持ち、確実なろ過を行います。さらに外側から内側に 向かって、孔径の変化に合わせて直径が連続的に小さくなるファイバーで構成されたメディアは、どの部分でも同じ空隙率を持っているため、滞留のないスムーズなろ過を行います。

特長と利点

- 絶対ろ過精度
- 厚みのあるメディア
- ウルチプリーツ構造

エンドシール・サイドシール


- 安定した流体清浄度による製品歩留まりの向上
- 効果的なゲルろ過による製品歩留まりの向上
- 低い圧力損失による設備の小型化とろ過時間の短縮



構成部品	材質
フィルターメディア	ポリプロピレン
メディアサポート	ポリプロピレン
サポートコア	
スパイラルラップ	
エンドキャップ	ポリプロピレン

熱溶着

仕様

耐差圧	0.41 MPa (~ 30 °C)
	0.34 MPa (~ 50 °C)
	0.21 MPa (~ 70 °C)
	0.10 MPa (~ 80 °C)
最高使用温度	80 °C

製品型式

ガスケットタイプ

PUY 1 UY 2 3

O-リングタイプ

AB ① UY ② ④ ⑤

(1)

•		
コード	カートリッジ長さ	
1	10"	
2	20"	
3	30"	

<u>3</u> コード ガスケット材質 J EPDM (標準)

JEPDM (標準)Hフッ素ゴムH4シリコンH13NBR

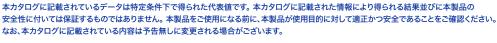
④コードO-リング規格3 AS568A-2227 AS568A-2268 AS568A-222

コード
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本
日本<b

2

	 ろ近	· · · · · · · · · · · · · · · · · · ·	00 %0 0 1.14	
カートリッジ グレード	液体における 下記ろ過効率でのμm値		20 ℃の水を 10 L / minで流した時の	一般的なろ過流量 (L / min / 10" カートリッジ)
	90 %	99.98 %	初期圧力損失 (kPa)	
020	<1.0	2.0 ³	2.4	3~5
045	1.2	4.5	1.55	8~10
060	2.5	6.0	0.63	10~20
100	4.3	10	0.55	10~20
200	11	20	0.45	20~30
300	15	30	0.36	20~30
400	18	40	0.27	30~40
500	20	50	< 0.18	40
700	26	70 ²	< 0.18	40
1000	33	100	< 0.18	40

¹ ANSI B93、31-1973に基づいたシングルバスF-2試験法によるデータです


流体適合性

流体適合性は、使用条件(温度、濃度、使用期間など)により異なりますので、使用前に適合性を確認することをお奨めします。詳しくは、当社各営業所にお問い合わせください。

〒163-1325 東京都新宿区西新宿 6-5-1

マイクロエレクトロニクス事業部 TEL.03(6901)5700

² ろ過効率99.9 %での値

³ ろ過効率99 %での値