

Коалесцер PhaseSep® для эффективного разделения несмешивающихся жидкостей

Рисунок 1: Коалесцер Pall PhaseSep® для сепарации жидкостей

Введение

Неспособность эффективно разделять жидкие эмульсии может привести к возникновению ряда серьезных проблем в нефтеперерабатывающей и химической промышленности. Жидкие примеси в конечных продуктах могут привести к несоответствию продукта спецификациям, ускоренному износу катализаторов на технологической линии, коррозии емкостей для хранения и возрастанию затрат на очистку сточных вод.

Сепарация эмульсий зависит от физических свойств обеих жидких фаз и может оказаться непростой задачей. Насколько легко могут быть разделены две жидкости, определяется их плотностями, вязкостями и межфазным натяжением. Эффективность обычных коалесцеров начинает снижаться уже при межфазном натяжении ниже 20 дин/см. Эффективность сепарации зависит также и от взаимодействия жидкостей с коалесцирующим материалом. Часто материал мембраны оказывается несовместимым с разделяемыми жидкостями, а совместимые материалы не всегда достаточно эффективно разделяют фазы. Коалесцер Pall PhaseSep® изготавливается в нескольких вариантах, отличающихся материалом высокоэффективных коалесционных мембран. Таким образом, коалесцеры Pall можно использовать для разделения практически любых несмешивающихся жидкостей в нефтяной, газовой и химической отраслях.

Типичные применения коалесцеров PhaseSep

- Удаление остаточной щелочи из топлив после щелочной очистки.
- Отделение воды от масла.
- Удаление воды и щелочи из систем анализа проб в линии.
- Отделение воды от рабочих растворов перекиси водорода.
- Отделение воды из товарных топлив и промежуточных продуктов на нефтеперерабатывающих заводах.
- Удаление углеводородов из аминов, оставшихся в них после очистки газа в аминовом абсорбере.
- Отделение бензина пиролиза от охлаждающей воды при производстве этилена.

Система Pall PhaseSep как правило состоит из стадии предварительной фильтрации для удаления твердых

частиц* и последующей сепарации жидких фаз в одно- или двухступенчатом модуле коалесцера. Коалесцеры PhaseSep снижают содержание жидких примесей до уровня 15 миллионных весовых долей (ппм вес.) и ниже в широком диапазоне рабочих условий:

- Исходная концентрация жидких примесей – до 10%.
- Межфазное натяжение более 0,5 дин/см.

Для предварительной фильтрации с целью увеличения ресурса коалесцеров корпорация Pall рекомендует использовать фильтроэлементы Pall Ultipleat® High Flow с мембраной Ultipor® GF или фильтроэлементы Pall Epocel® (со степенью задержки 10 мкм). Для получения консультаций по совместимости конкретных материалов и жидкостей обратитесь к местному представителю корпорации Pall.

Описание

Системы Pall PhaseSep поставляются в двух различных конфигурациях. В обоих вариантах обработка начинается со стадии предварительной фильтрации, на которой удаляются твердые примеси.

Предварительная фильтрация

Pall рекомендует устанавливать фильтр предварительной очистки перед коалесционными элементами для их защиты. Удаление твердых загрязнений имеет важное значение:

- 1) Существенно продлевает срок эксплуатации коалесцера;
- 2) Снижает уровень примесей до значения, требуемого спецификациями для жидкости;
- 3) Снижает стабильность жидкой эмульсии, облегчая тем самым последующую сепарацию.

Имеются два варианта корпусов коалесцеров PhaseSep. Рекомендации по выбору требующегося в конкретном случае варианта приведены в таблице 1.

Таблица 1: Выбор конфигурации коалесцера

Рабочие условия	Рекомендуемая конфигурация	
Дисперсная фаза – водный раствор, межфазное натяжение > 3 дин/см	Koaлесцер PhaseSep с сепаратором в вертикальном корпусе	
Дисперсная фаза – водный раствор, межфазное натяжение < 3 дин/см	Коалесцер PhaseSep без сепаратора в горизонтальном корпусе	
Обе жидкости не являются водными растворами	Коалесцер PhaseSep без сепаратора	
Дисперсная фаза – масло, дисперсионная среда – водный раствор	Коалесцер PhaseSep без сепаратора в горизонтальном корпусе	

Установка модуля коалесцера-сепаратора в вертикальном корпусе

Модуль коалесцера PhaseSep с сепаратором рекомендуется использовать в случае примеси в виде водного, щелочного или аминового раствора при межфазовом натяжении более 3,0 дин/см. (см. рис. 2). Модуль коалесцера PhaseSep с сепаратором в вертикальном корпусе особой конструкции – это наиболее эффективное решение для разделения двух жидкостей, соответствующих приведенным условиям. Смесь жидкостей поступает в коалесционный фильтроэлемент и течет в направлении изнутри наружу. Именно здесь при прохождении смеси через запатентованный коалесцирующий материал мелкие капельки, находящиеся во взвешенном состоянии в сплошной среде объединяются, т. е. сливаются вместе.

Очищенная жидкость и крупные капли дисперсной фазы вместе поступают в сепаратор, расположенный сразу под коалесцером. Поток направлен теперь снаружи - внутрь. Гидрофобный сепарационный материал не пропускает водную фазу внутрь сепаратора. Через сепаратор проходит только необводненная очищенная жидкость. Две жидкости выводятся через раздельные выходы.

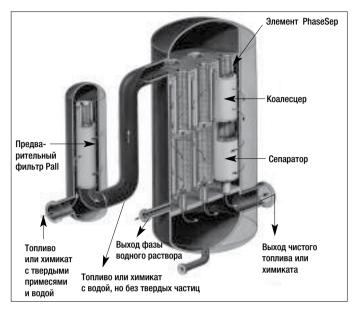


Рисунок 2: Система сепарации жидкостей Pall PhaseSep с модулями коалесцера и сепаратора в вертикальном корпусе.

Koaлесцер Pall PhaseSep в горизонтальном корпусе

Обычно коалесцер PhaseSep без сепаратора устанавливают в горизонтальном корпусе (см. рис. 3). Коалесцер Pall PhaseSep рекомендуется использовать для отделения неводных жидких примесей, например, для удаления масла из воды или сепарации двух неводных жидкостей. Кроме того, коалесцер PhaseSep в горизонтальном корпусе обеспечивает максимальную эффективность сепарации жидкостей с низким межфазным натяжением (менее 3,0 дин/см).

В такой установке смесь жидкостей поступает в коалесционный фильтроэлемент и проходит в направлении изнутри - наружу. Как и в модуле коалесцера с сепаратором, при прохождении смеси через коалесцер PhaseSep мелкие капли, находящиеся во взвешенном состоянии, в дисперсионной среде объединяются, сливаются вместе. В горизонтальном корпусе под действием силы тяжести крупные капли дисперсной фазы отделяются от основной фазы и выводятся. Необходимый размер корпуса зависит от межфазного натяжения, вязкости и плотностей обеих жидкостей.

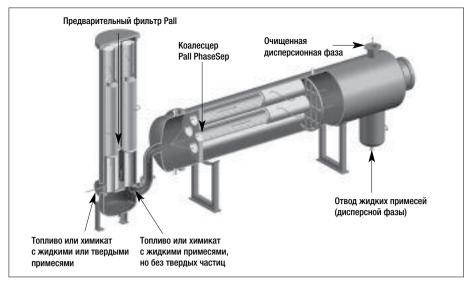


Рисунок 3: Система сепарации жидкостей Pall PhaseSep с коалесцером в горизонтальном корпусе.

Преимущества

• Повышенное качество и выход жидкости:

Высочайшая эффективность удаления жидких и твердых примесей снижает количество случаев несоответствия продукта спецификациям и, таким образом, уменьшает затраты на переработку, транспортировку и штрафы за несоответствие продукта спецификации. Кроме того, снижаются потери, связанные с коррозией оборудования и износом дорогих катализаторов вследствие присутствия посторонних жидкостей в обрабатываемых потоках.

- Низкая стоимость удаления жидких и твердых примесей: Большой ресурс коалесцеров PhaseSep и высочайшая эффективность сепарации жидкостей снижают стоимость очистки по сравнению с менее эффективными технологиями (солевые поглотители, электростатические сепараторы и насыпные фильтры). А использование системы PhaseSep в комбинации с другими технологиями очистки значительно уменьшает эксплуатационные расходы.
- Высокая производительность модулей позволяет уменьшить размеры установки: Конструкция установки, обеспечивающая высокую производительность системы PhaseSep, позволяет ей эффективно работать в случаях, когда возможно временное увеличение потока. Поэтому требуется меньшее количество сепарационных элементов, а значит, меньше и размеры установки.
- Низкая стоимость технического обслуживания и утилизации: Обеспечиваемый уникальным

- материалом мембран, разработанным Pall, и использованием предварительного фильтра увеличенный срок эксплуатации фильтроэлементов PhaseSep снижает затраты на обслуживание, замену и утилизацию фильтроэлементов.
- Быстрое восстановление при резких изменениях рабочих условий: Установка с вертикальным корпусом гораздо менее чувствительна к изменениям рабочих условий. Так как в ее модулях используются сепараторы с гидрофобными мембранами, увеличение концентрации жидких примесей практически не влияет на качество продукта.
- Сепарация эмульсий со сверхнизким межфазным натяжением: Исключительные сепарационные качества коалесцеров PhaseSep позволяют разделять жидкости со сверхнизким межфазовым натяжением, которые невозможно разделить традиционными коалесцерами. Система Pall с коалесцером PhaseSep в специально разработанном горизонтальном корпусе способна разделять эмульсии жидкостей с межфазным натяжением, начиная с 0,5 дин/см, в то время, как эффективность обычных коалесцеров стремительно падает уже при уменьшении межфазного натяжения ниже 20 дин/см.

Особенности

- Уникальная конструкция модулей коалесцеров-сепараторов: Коалесционные фильтроэлементы Pall собраны в единые модули с сепарационными элементами. Эта уникальная конструкция оптимально распределяет потоки жидкости между коалесцерами и сепараторами, обеспечивая равномерную нагрузку на все сепараторы. В традиционных двухступенчатых системах, сепараторы обычно размещаются отдельно от коалесцеров, и разность пространства до сепараторов приводит к неравномерности потоков. В таких двухступенчатых системах требуется по несколько коалесционных элементов на каждый сепаратор. Конструктивное объединение сепаратора и коалесцера увеличивает их ресурс и уменьшает размер установки.
- Совместимость с жидкостями: Pall выпускает несколько вариантов коалесцеров, отличающихся материалом мембран, что обеспечивает совместимость практически с любыми смесями жидкостей.
- Высокостабильный материал мембран: Высокостабильный материал мембран гарантирует эффективность работы коалесцеров. Корпорация Рашеразработала особый материал – без использования стекловолокна, не снижающий своих качеств под воздействием поверхностно-активных веществ. Обычно эффективность коалесценции и сепарации падает при обволакивании поверхностей мембран поверхностно-активными веществами (как присутствующими изначально, так и введенными в процессе переработки).

Технические характеристики

Максимальная температура:	149 °C
Начальный перепад давления:	0,14 бар
Рекомендованный перепад давления для замены:	1,0 бар

Информация для заказа

Обозначение	Описание	Внешний диаметр, см	Длина, см
LCS2H1AH	Коалесцер PhaseSep	9,5	50,8
LCS4H1AH	Коалесцер PhaseSep	9,5	101,6
LSS2F1H	Сепаратор	9,5	50,8

Совместимость

Коалесцер PhaseSep совместим со многими коррозионно-активными веществами, используемыми в химической и нефтехимической промышленности, такими как кислоты и другие сильные окислители, щелочи, растворы травления металлов, жидкий кислород и практически любые органические растворители. Для получения информации по совместимости с конкретными химическими веществами обратитесь в московский офис корпорации Pall или к локальному дистрибьютору.

ООО «Палл Евразия»

Россия, 127015, г. Москва, ул. Вятская, д. 27, стр. 13 Тел.: +7 (495) 787-76-14 Факс: +7 (495) 787-76-15

e-mail: InfoRussia@europe.pall.com

Посетите наш сайт www.pall.com

Офисы и заводы корпорации Pall расположены по всему миру: Аргентина, Австралия, Австрия, Бельгия, Бразилия, Канада, Китай, Франция, Германия, Индия, Индонезия, Ирландия, Италия, Япония, Корея, Малайзия, Мексика, Нидерланды, острова Новая Зеландия, Норвегия, Польша, Пуэрто-Рико, Россия, Сингапур, Южная Африка, Испания, Швеция, Швейцария, Тайвань, Таиланд, Великобритания, США и Венесуэла. Дистрибьюторы имеются во всех крупных промышленно развитых странах мира.