(PALL) PALL CORPORATION

Green Hydrogen: Add cleanliness to your production value chain!

Filtration & Separation Technologies

Agenda Content

- An introduction to Pall
- Why Hydrogen?
- Green Hydrogen Production
- Liquid/Gas Separations
- Particle Removal
- Summary
- Q&A

An Introduction to Pall Corporation

Pall is a leading global provider in high-tech filtration, separation and purification products.

- Two operating divisions
 - Pall Industrial
 - Pall Life Sciences
- 10,000 employees
- 35 countries, 90 offices globally
- \$80M annual investment in R&D
- A subsidiary of Danaher
 - Proven Partners
 - Focused Expertise
 - Holistic Approach

Deliver higher performance liquid and gas separation solutions

Increase Asset Life

Improve Asset Reliability and productivity

Achieve high quality products

Activities in the Energy sector

EPCs

Adjacent / Complementary Markets

OEMs & FPSO & FLNG Packagers

Licensors

Upstream

- O&G production
- Gas processing & treatment
- LNG / FLG •
- Shale gas

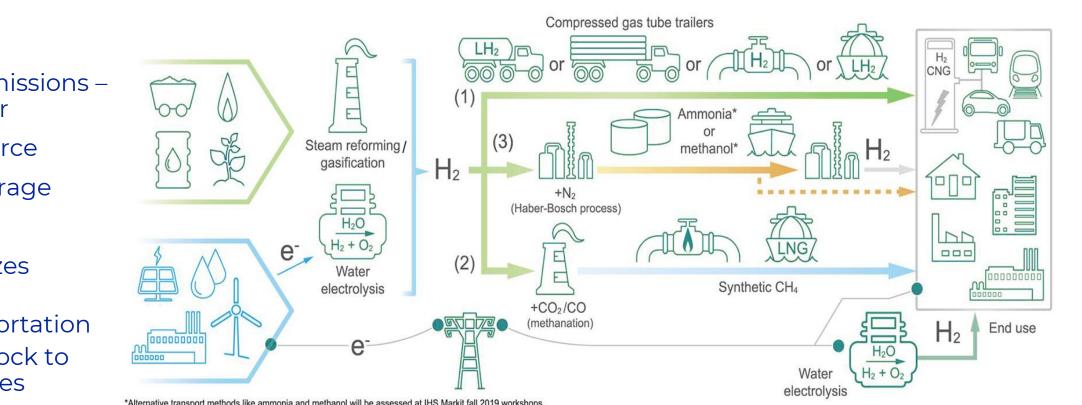
Midstream

- Pipeline
- Compression station
- Metering station
- Terminals

Downstream

- Refinery
- Petrochemical (Ethylene)
- Fine Chemical

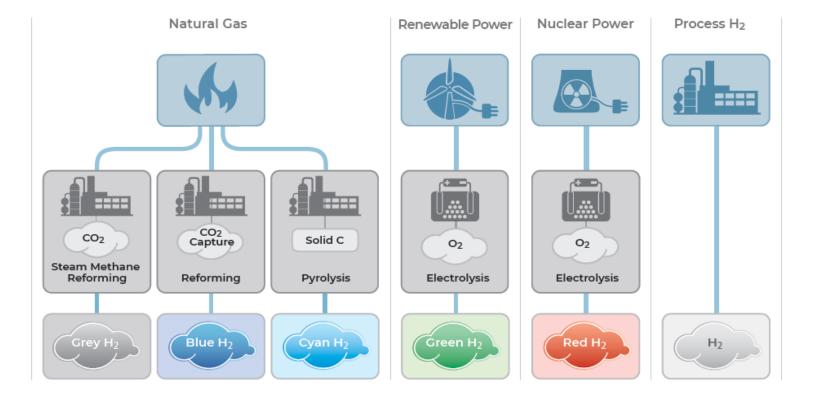
Plastic & Polymer


- PVC/PVDF
- Final Products
- **Green Energy**
- Bio-refineries
- Bio-sourced chemicals /
- polymers
- Biogas
- Hydrogen
- Batteries

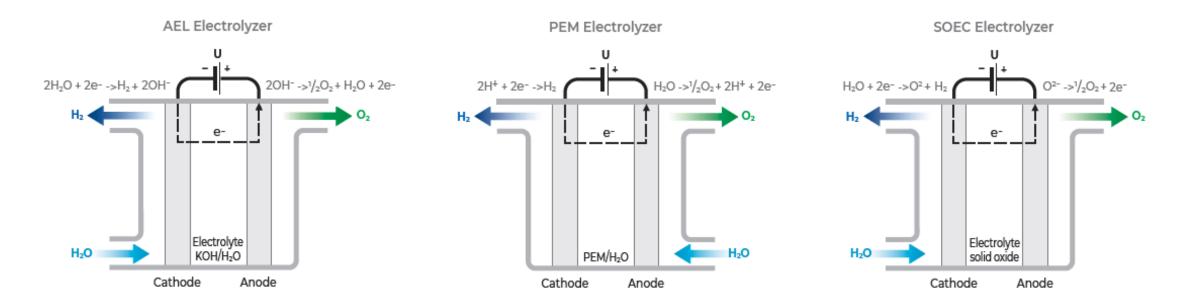
Why Hydrogen?

- No toxic emissions • water vapor
- Energy source
- **Energy Storage** •
- Decarbonizes • Industries
 - Transportation
 - Feedstock to refineries
 - Building heat • and power

*Alternative transport methods like ammonia and methanol will be assessed at IHS Markit fall 2019 workshops. Source: IHS Markit



Hydrogen Production Processes


- Grey Hydrogen
 - Reforming
 - \$1.25 \$3.5/kg (Cheapest)
- Blue Hydrogen
 - Reforming plus carbon capture
- Green Hydrogen
 - Electrolysis powered by renewables
 - \$2.5-\$7.25/kg (Most Expensive)

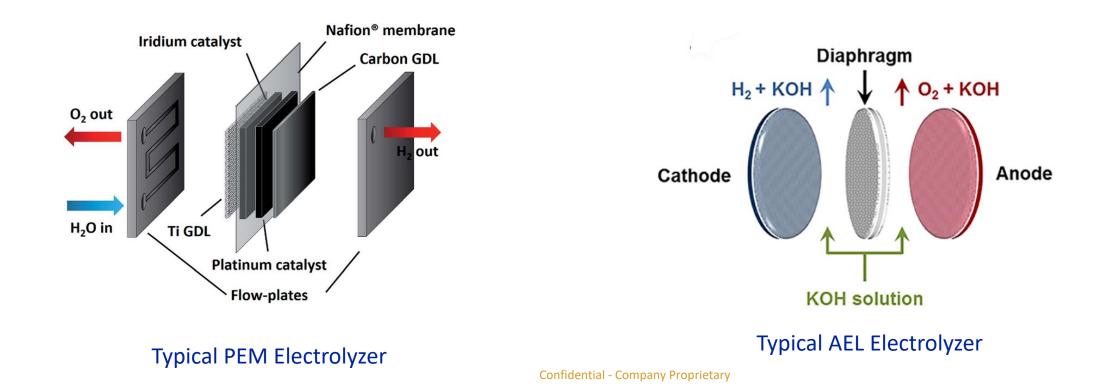
Green Hydrogen Production

- Electrolysis of water powered by renewable electricity solar, wind, hydropower
- Hydrogen produced at the Cathode
- Oxygen Produced at the Anode
- 3 Types of Electrolyzers

Confidential - Company Proprietary

Types of Electrolysers

Alkaline Electrolyser	PEM Electrolyser
Low system pressure	High system pressure
Moderate temperature	Moderate temperature
Liquid electrolyte	Solid electrolyte
Low feed purity (KOH/water)	High feed purity (water)
Diaphragm	Membrane
H ₂ purity: 99.9 %	H ₂ purity: 99.99 %
Energy efficiency: 70-80 %	Energy efficiency: 80-90 %
Low current density	High current density
Low cost components	High cost components
Slow response system	Quick response system


Confidential - Company Proprietary

Green Hydrogen Production - Challenges

- High Cost of Electrolyzers
- Stringent Gas Purity Specifications

- Example: For fuel cells
 - Water 2000ppm to <5 ppm
 - Oxygen 4000 ppm to < 5 ppm

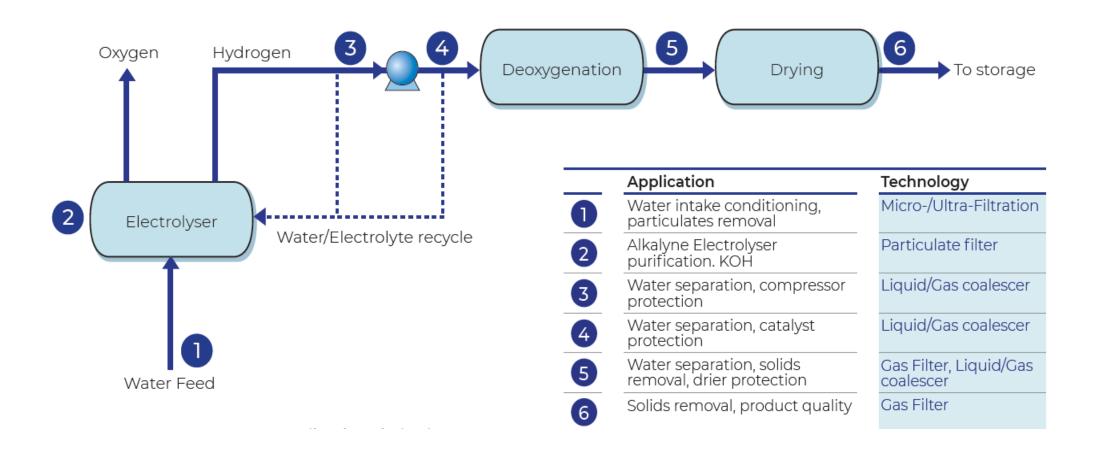
Green Hydrogen Production - Separations

- Liquid/Gas Separations and Particle Removal
- Separation Equipment Choice
 - Quality Required
 - Flow Rate
 - Type and Amount of Contaminants
 - Economics
 - Capital and Operating Costs
 - Waste Disposal
 - Maintenance

- Faster
- Cleaner
- Finer
- Low Fouling
- Application Specific
- Device Compatible
- Regulatory Compliant
- Measurable
- Controlled & Resistant Materials

Internal Infrastructure and Technology Combined with External Collaboration

Growing Pall


Toolbox

Pall Media	
	Nylon
	Asymmetric
	PTFE
	Ultrafiltration
	Meltblown
	Glass Fiber
	Sulfone
	Cellulose
	PVDF

Pall's Broad Technology Portfolio Ensures the Correct Separations Solution for the Customer's Process

Green Hydrogen Production - Separations



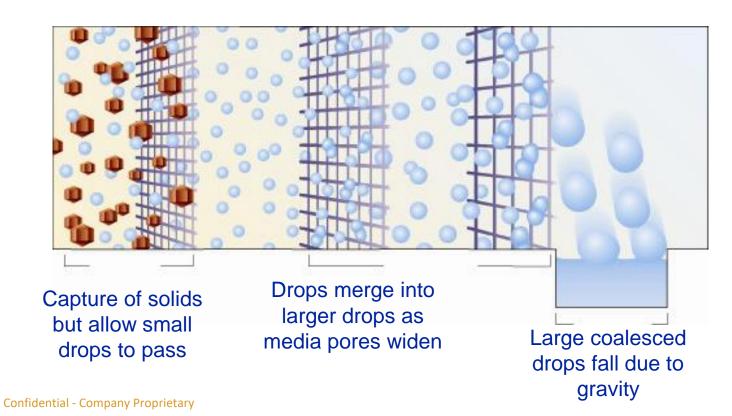
Confidential - Company Proprietary

Liquid/Gas Separations

PALL

Not all technologies can separate the finest liquid droplets (aerosols) to avoid liquid carry-over

Confidential - Company Proprietary


Coalescence

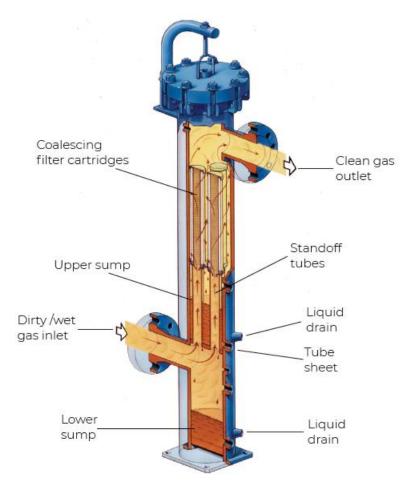
- Coalescence = Removal of a fine dispersed liquid phase from a bulk phase (liquid or gas)
 - Liquid/Gas coalescers = Removal of liquid AEROSOLS from a gas
 - Liquid/Liquid coalescers = Removal of liquid DROPLETS from a liquid

Coalescence principle MECHANICAL separation based on ability of the coalescer media to combine the droplets, and to separate them

- \rightarrow NO chemicals required
- \rightarrow NO electricity
- \rightarrow NO centrifugal motion

Liquid/Gas Coalescer Performance

- L/G Coalescer performance is defined as a liquid content in the outlet gas
- A specification based on a droplet size for a given removal efficiency is inappropriate for liquid/gas separation technologies
 For example: '99% removal of 5 micron droplets (particles)'
 - Droplet size distribution is difficult to predict by computer simulation, and hard to measure in the field
- A good spec is based on the outlet liquid content
 - Measurable in the field
 - Consistent with the inlet gas quality (inlet liquid content)


Pall's High Efficiency Coalescers

PALL

- Configuration : VERTICAL only
- Smaller footprint vs. horizontal configured coalescers or demisters
- High flow capacity & High liquid handling capacity
- Oleophobic & Hydrophobic Treatment
- Resulting in compact vessel design
- Reliable high efficiency performance

Performance: <0.01 ppmw liquids downstream

* As per LASE test methodology

Pall's Liquid/Gas Coalescers

SepraSol[™]

Solid removal rating (gas)0.3 μm (99.99%)Temperature rating82°C (65°C water)Liquid removal level0.003 ppmw (LASE)

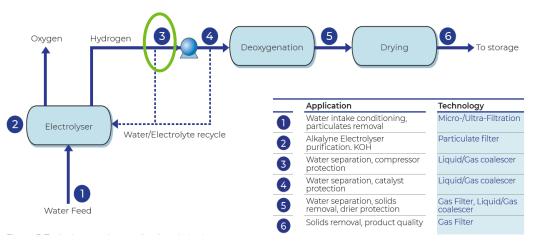
SepraSol[™] Plus

Solid removal rating (gas) Temperature rating Liquid removal level 0.3 μm (99.7%) 82°C (65°C water) 0.01 ppmw (LASE)

Solid removal rating (gas)0.3 μm (99.99%)Temperature rating62°C - 204°CLiquid removal levelVarious

Confidential - Company Proprietary

Case Study – Coalescers after Electrolysis


- Electrolyzer Manufacturer in Germany
- AEL Electrolyzer

٠

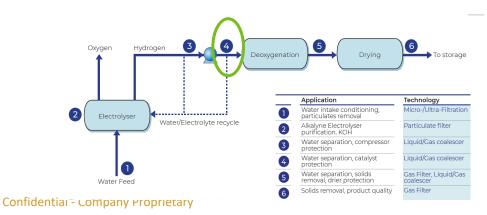
- Removing Water/KOH from H₂ gas after electrolysis (before compression)
- Retrofit of Mist Eliminator with Pall Coreless Liquid Gas Coalescer
- Configuration : VERTICAL
- Fully compatible polypropylene MOC vs glass fiber
- Lifetime and operating costs TBD as testing continues
- Further separation optimization TBD
- Testing on Oxygen stream

Pall Coreless Liquid Gas Coalescer

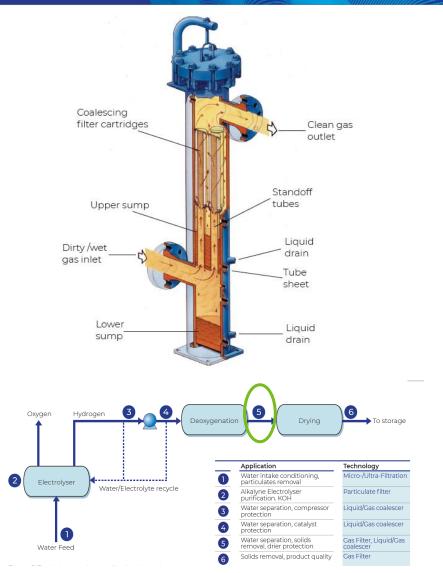
Case Study – Coalescers after Compressors

After compression, additional liquids and oil droplets can be present in gas stream Pall has hundreds of installations globally and in many industries!!

Oil from Hydrogen Separation


- ➢ Flow: 340 kg/h H₂
- Inlet Oil content 100 ppmw
 - Outlet Oil Content < 0.01 ppmw</p>
- ➢ Temperature: 40 °C
- Compression to 200 300 bar

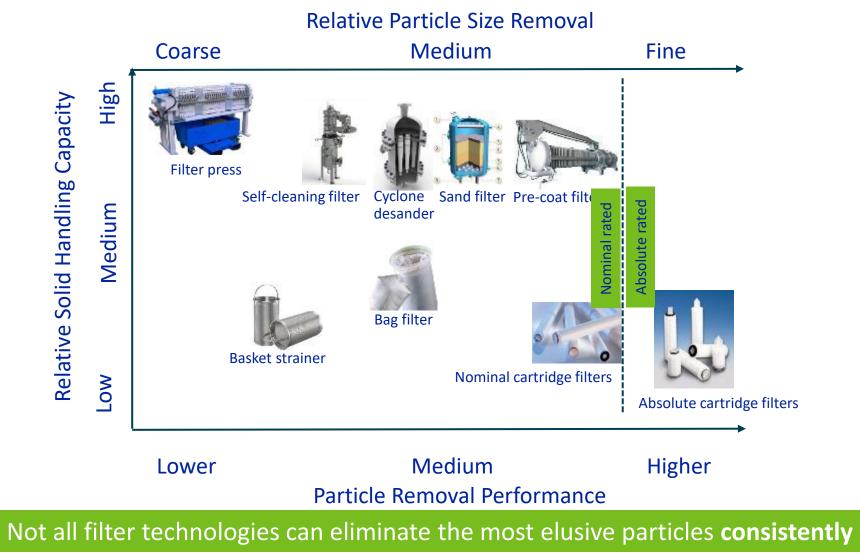
Reciprocating Compressor


SepraSol[™] Elements

Case Study – Coalescers for PSA protection


- French Ammonia Plant
- Pall LG Coalescer upstream of PSA
- Field measurements confirmed liquid carry over < or = to 2 ppb...
- A manual mistake on a valve created a high delta P back flush damaging the coalescer cartridges
 - A rapid PSA yield decrease was observed
 - New cartridges installed

Particle Filtration


- Sources of solid contaminants
 - Incoming water feed and/or KOH feed (in AEL systems)
 - Oxidation in process piping and equipment such as pumps and compressors
 - Downstream of adsorbent driers
 - Changes in chemistry/degradation
 - During maintenance such as welding, grease, lubricants, dirt

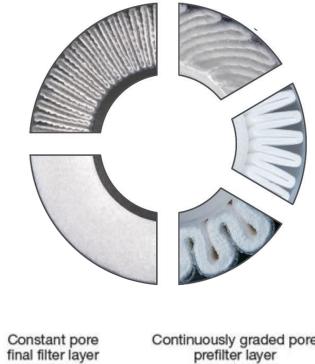
Visual limit: around 40 μm

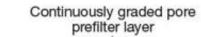
Particle Filtration

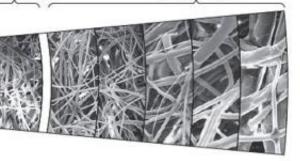
Confidential - Company Proprietary

Absolute vs Nominal Ratings

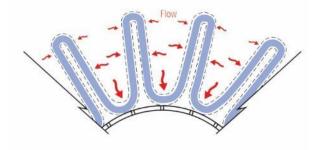
In practice, what is the difference?




non filtered amine
 after 10μm nominal filter
 after 10μm absolute filter


- Absolute = tested efficiency, according to industry standards (e.g ISO 4572)
- Nominal (non-absolute) = filter not tested, arbitrary removal rating given by manufacturer, based upon weight percent removal, not reproducible
- Typical problem with nominal filters: particles larger than the claimed removal rating pass through

Particle Filtration



Conventional Fan pleat media layout

Pall patented Ultipleat[®] media layout

Pall: 10.85m Competitor: 3.61m

Water Feed – PEM Electrolyzers

Application

Vater intake conditioning

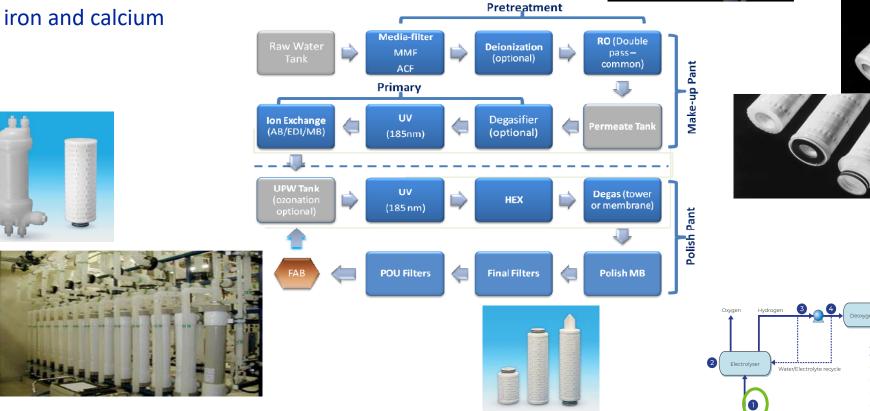
ticulates remova

/ater separation, solids emoval, drier protection olids removal, product quality

kalvne Electrolvs

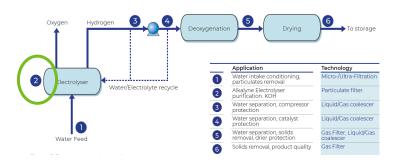
Technology

articulate filter

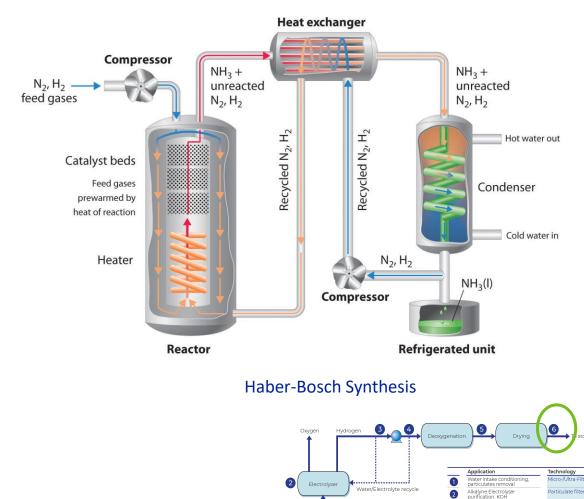

as Filter, Liquid/Ga

Gas Filter

- RO Protection e.g. 5 microns absolute
- Downstream of RO e.g. 0.02 to 1 micron absolute
- Ion removal: e.g. iron and calcium


KOH Feed – AEL Electrolyzers

- Exchange intervals up to 1 year
- > Absolute filtration (10 micron) for pump protection
- > 30% KOH/ Water @ 80 °C
- ➢ High flow rates
- Materials available in portfolio: PP, PTFE, ECTFE



Pall Ultipleat^(R) Highflow Filter

Hydrogen Storage

- Storage Possibilities
 - Tanks
 - Salt Caverns
 - Conversion to Ammonia by Haber-Bosch synthesis
 - Pall has >200 filter and coalescer installations in ammonia plants!!
- After compression, gas can be contaminated with fine solids and compressor oil
- Further contamination can occur in tanks and in salt caverns
- Pall's gas filters and liquid/gas coalescers can be employed to reduce contaminants to reach the desired specifications for the end use

Water Feed

Water separation, compressor

Solids removal product quality

quid/Gas coalesce quid/Gas coalesce as Filter, Liquid/Ga

Gas Filter

Case Study - Blue Hydrogen

- Electricity provider gasifying coal to produce hydrogen and capturing/storing the CO2 produced = BLUE H2
- Hydrogen is then liquefied and shipped to neighboring country
- Pall's metal blow back technology was tested in pilot plant to remove char after gasification
- Iron Aluminide construction to meet extreme material and temperature resistance
- Pall's technology moving to scale-up

Pall PSS^(R) Series Filter Elements in Pilot Housing

SLS Global Technical Support

Our customer-focused technical support organization ensures product is working in the application as intended:

- Product testing during prototype phase
- Assisting customers with process integration by on-site work, best practice training, process optimization
- Troubleshooting of product applications issues
- Validation services
- Presentation of Pall technology (e.g., in scientific forums or on congresses through papers or technical bulletins)

Pall Rental Units – Full Scale and Pilot Scale

- Connect directly to your process
- Direct scale-up
- Short- or long-term rentals
- On-site support

Summary

- Hydrogen plays a key role as the shift to renewable energy continues
- Green hydrogen production must be increased but faces challenges in commercialization and scale –up
- High cost of electrolyzers and strict purity standards
 - Removal of liquid and solid contaminants are crucial
- Pall Corporation is committed to help advance the production of green hydrogen by providing separation and purification solutions that can meet any specific need

Thank you for your attention QUESTIONS?

Contact

toshi_sato@pall.com takemi_namba@ap.pall.com geetha_sanjeev@pall.com

This presentation is the Confidential work product of Pall Corporation and no portion of this presentation may be copied, published, performed, or redistributed without the express written authority of a Pall corporate officer.

PALL

© 2021 Pall Corporation