Technical Paper 技術論文

閉塞理論の解説とる過結果への適用

日本ポール株式会社 応用技術研究所 角屋 正人

1. はじめに

フィルターは流体中の異物を捕捉し流体から異物を除去す ることを目的として使用されるが、表面および細孔内に異 物を保持することで流れに対する抵抗が増していく。これ により、フィルター閉塞が起こる。閉塞は、ろ過操作にお いて流量低下あるいは差圧上昇の形で現れ、ある限界値 (ユーザー事情で設定)を超えた時点でフィルター寿命に達 したと判断され使用が停止される。そのため、ろ過操作を 行う上で、対象流体でのフィルター閉塞の進行を正確に把 握することが重要になる。使用実績のない流体に新たにフ ィルターを適用する際は、ラボスケール、実機スケールで のろ過試験が行われる。ろ液評価データとともにフィルター 閉塞データを参考にして、フィルター選定、必要ろ過表面 積の見積り、ろ過操作の検討が行われる。

ろ過試験は上記目的で行われるが、得られた結果を理論解 析することにより、さらなる知見を得られることがある。 一般にフィルターの細孔構造は複雑であり、異物捕捉形態 も複雑なことが想定されるが、単純な細孔構造、捕捉形態 を仮定したモデルでの閉塞の進行と一致するケースが多く 見られる。モデルを使った解析は、ろ過現象の特徴づけ、 試験結果を分類しての蓄積、ろ過条件を変えた時の閉塞進 行の見積もり等に活用できる可能性がある。このようなモ デルとしてHermans-Bredée¹¹が提案した閉塞ろ過モデル が古くから知られており、完全閉塞、標準閉塞、中間閉塞 の3つがある。また、ろ過のモデルとしてはケーキろ過も あり解析に利用されている。

本稿では、各モデルの形態、法則を解説した上で、実際の ろ過結果に閉塞の式を適用した例を紹介する。

いずれの閉塞モデルにおいても、ろ材を図1に示した均一 な内径、長さをもった円管の束と仮定し、粒子捕捉による 流路抵抗の変化を計算しモデル式を得る²⁰。円管の仮定によ り、ろ材の流れに対して円管内の層流の流れを示すハーゲ ンポアズイユの式(1)を適用することができる。

図1:ろ材の模式図

この式をろ材の流れに置き換えると(2)式となる。いずれのモデル式も(2)式より出発して導くことができる。

$$J = N \cdot \pi \cdot d^4 \cdot \Delta P / 128 \mu L \quad (2)$$

ろ過面積当り流量計算式

J:単位ろ過面積当たりの流量(m³/m²・s)	△P:円管両端での差圧(Pa)
N:単位ろ過面積当たりの円管数(1/m²)	µ :流体の粘度(Pa・s)
d :円管の直径 (m)	L :円管の長さ(m)

1) 完全閉塞

負荷した粒子が円管入口で捕捉され、管を完全に塞ぐというモデルである。その場合、開口円管の数Nは、負荷した粒子量に比例して減少する。模式図を図2に示した。開口円管の減少速度が、流量Jと粒子濃度C(kg/m³)に比例するとして、(3)式をたてる。

図2:完全閉塞のモデル図

$$\frac{dN}{dt} = -\alpha \cdot J \cdot C$$
(3)
開口円菅減少速度と流量・粒子濃度の関係式
t:時間 (s)
\alpha:係数 (1/kg)

(2)、(3)式を連立して計算することにより、完全閉塞の モデル式が得られる。定流量ろ過での差圧ΔPとろ液量v の関係を(4)式に、定圧ろ週での流量Jとろ液量vの関係 を(5)式に示した。(4)式より定流量ろ過では1/ΔPと vの関係が直線となることがわかる。(5)式より定圧ろ過 ではJとvとの関係が直線となることがわかる。これを図3 に示した。

$$\Delta \mathsf{P} = \frac{\Delta \mathsf{P}_0}{(1 - \mathsf{K}_b \cdot \mathsf{v})}$$
(4)
_{定流量ろ週条件}

ΔP₀: ろ材両端での初期差圧 (Pa) K_b :閉塞係数 (1/m) v :単位面積当たりのろ液量 (m³/m²)

$$\mathbf{J} = \mathbf{J}_0 \cdot (\mathbf{1} - \mathbf{K}_{\scriptscriptstyle \mathsf{b}} \cdot \mathbf{V}) \tag{5}$$

定圧ろ過条件

J。: 単位ろ過面積当たりの初期流量(m³/m²・s)

2)標準閉塞

負荷した粒子が円管内壁に均一に捕捉されるというモデル である。その場合、粒子負荷により円管の内径が減少して いく。模式図を図4に示した。各円管の内容積の減少速度 が流量Jと粒子濃度Cに比例するとして(6)式をたてる。

g

図4:標準閉塞のモデル図

(2)、(6)式を連立して計算することにより標準閉塞のモ デル式が得られる。定流量ろ過での差圧ΔPとろ液量vの関 係を(7)式に、定圧ろ過での流量Jとろ液量vの関係を(8) 式に示した。(7)式より定流量ろ過では1/ΔPの平方根と vの関係が直線となることがわかる。(8)式より定圧ろ過 ではJの平方根とvとの関係が直線となることがわかる。こ れを図5に示した。

図5:標準閉塞でのろ液量vと差圧ΔP、流量Jの関係

3)中間閉塞

負荷した粒子が円管入口および既に捕捉された粒子上に捕捉 されるというモデルである。その場合負荷された粒子は円管 の開口部分と閉塞部分とに分配されるので、開口円管が塞が れる速度(割合)は開口円管の数に比例して減少する。模式 図を図6に示した。開口円管数の減少速度が流量Jと粒子濃 度Cおよび開口円管数Nに比例するとして(9)式をたてる。

図6:中間閉塞のモデル図

$$\frac{\mathrm{dN}}{\mathrm{dt}} = -\alpha \cdot \mathbf{J} \cdot \mathbf{C} \cdot \mathbf{N}$$
(9)

開口円管減少速度と流量・粒子濃度・開口円管数の関係式

(2)、(9)式を連立して計算することにより中間閉塞のモ デル式が得られる。定流量ろ過での差圧ΔPとろ液量vの関 係を(10)式に、定圧ろ過での流量Jとろ液量vの関係を (11)式に示した。(10)式より定流量ろ過ではΔPの自 然対数とvの関係が直線となることがわかる。(11)式より 定圧ろ過ではJの自然対数とvとの関係が直線となることが わかる。これを図7に示した。

$$\Delta P = \Delta P_0 \cdot \exp(K_i \cdot v)$$
 (10)
定流量ろ過条件
K_i:閉塞係数 (1/m)
 $J = J_0 \cdot \exp(-K_i \cdot v)$ (11)
定圧ろ過条件
定流量ろ過の場合

図7:中間閉塞でのろ液量vと差圧ΔP、流量Jの関係

4) ケーキろ過

負荷した粒子が円管を塞ぐことなく、ろ材(円管の束)表 面に堆積していくというモデルである。その場合、負荷し た粒子量に比例して、堆積粒子(ケーキ層)の厚みが増し ていく。模式図を図8に示した。ここで堆積粒子による抵 抗増加を、円管が長くなったことに置き換える。模式図を 図9に示した。L_m(m)はろ材抵抗に相当する円管の長さ、 Lc(m)はケーキ層の抵抗に相当する円管の長さを表す。こ こでハーゲンポアズイユの式をろ材に適用した(2)式の Lを、L = Lm + Lc として(12)式のように書き換える。

Technical Paper 技術論文

図8:ケーキろ過のモデル図 ①

図9:ケーキろ過のモデル図 ②

(13) 式を(12) 式に代入して計算を進めることにより、 ケーキろ過式が得られる。定流量ろ過での差圧ΔPとろ液 量vの関係を(14) 式に、定圧ろ過での流量Jとろ液量v の関係を(15) 式に示した。(14) 式より定流量ろ過で はΔPとvの関係が直線となることがわかる。(15) 式よ り定圧ろ過では1/Jとvとの関係が直線となることがわか る。これを図10に示した。

$$\Delta P = \Delta P_0 \cdot (1 + K_c \cdot v) \quad (14)$$

定流量ろ過条件

Kc:閉塞係数(1/m)

$$J = J_0 \cdot \frac{1}{(1+K_c \cdot V)}$$
(15)
定在乙调条件

以上のように、4つのモデルと定流量、定圧ろ過条件での 閉塞の式を示した。次に閉塞の式が実際のろ過結果にあて はまる例を紹介する。

3. 閉塞モデル式のろ過結果への適用

1) 完全閉塞

孔構造が単純で表面で異物を捕捉するフィルターに対し て、孔を完全に塞ぐ異物が多数存在する流体を通液したと きに見られる閉塞である(図1、図2参照)。図11に、ゲ ルを含む紫外線硬化モノマーをトラックエッチメンブレン (直径1μmの円形の孔を有する)により定圧ろ過した時 の、ろ液量vに対する流量Jの減少を示した。流量は直線的 に低下し、完全閉塞モデル式が適用できた(図3の右図参 照)。直線の勾配から閉塞係数が求められた。同様のゲル を含む他のモノマー液のろ過を行い、閉塞係数を求めるこ とにより各モノマー中のゲルの量を比較するという活用方 法も考えられる。

図11:完全閉塞モデル式を適用した例 ゲルを含む光硬化モノマーの定圧ろ過

図12に、未溶解ポリマーを含むメチルセルロース水溶液 を、ナイロン66製メンブレンフィルターにより定圧ろ過 した時の、ろ液量vに対する流量の平方根√Jの低下を示し た。√Jは直線的に低下し標準閉塞の式があてはまる(図 5の右図参照)。標準閉塞のモデルは図4に示したとおり、 孔の内部で均一に粒子が捕捉され堆積するものであるが、 閉塞したフィルターは表面の大部分が未溶解ポリマーの膜 で覆われており、表面で閉塞していた²⁰。標準閉塞の場合、 閉塞モデル式が適用できても、実際の閉塞状態はモデルと 必ずしも一致しない。閉塞状態を誤って解釈することがな いよう、この点は注意を要する。

直線の勾配から閉塞係数が求められた。このメチルセルロ ース水溶液では、異なるろ過圧力、異なるフィルター(プ ロピレン製不織布フィルター、グラスファイバー製不織布 フィルター)を用いてろ過しても標準閉塞モデル式が同様 に良くあてはまり³⁾、閉塞係数を比較することにより、ろ 過圧力の影響、フィルター間の特性の違いを量的に把握で きた。標準閉塞モデル式は、ゲルを含む流体、懸濁液、分 散液のろ過に適用された例がある。

図12:標準閉塞モデル式を適用した例 溶解ポリマーを含むメチルセルロース溶液の定圧ろ過

3)中間閉塞

図13に、未溶解ポリマーを含むポリビニルブチラール溶液 を、ナイロン66製メンブレンフィルターを用いて定圧ろ過 した時の、ろ液量vに対する流量の自然対数Ln(J)の低下を 示した。Ln(J)は直線的に低下し、中間閉塞モデル式があて はまる(図7の右図参照)。閉塞したフィルター表面および 内部に未溶解ポリマーの膜で覆われた部分が見られた。中 間閉塞のモデルは図6に示したとおり、異物が閉塞部、開 口部を区別せず一様に堆積するものであるが、実際の閉塞 がモデルの機構に従い進行したかは明らかでない。フィル ターは図12で示した標準閉塞の例で用いたものと同じ種類 であるが、同様に未溶解ポリマーを含む液をろ過しても、 異なる閉塞パターンを示すことがある。中間閉塞モデル式 を適用した例は多く、ゲルを含む流体、懸濁液、井水、川 水、食品用抽出液、糖液のろ過等が挙げられる。

図13:中間閉塞モデル式を適用した例 未溶解ポリマーを含むポリビニルブチラール溶液の定圧ろ過

4) ケーキろ過

図14に、シリカダスト懸濁液を、ポリプロピレン製不織 布フィルターを用いて定流量ろ過した時の、ろ液量vに対 する差圧△Pの上昇を示した。ろ過初期を除きΔPは直線 的に上昇しており、この部分にケーキろ過モデル式があて はまる(図10の左図参照)。ろ過後のフィルターには実際 にケーキ層が形成されており、図8に示したモデルに近い 機構で閉塞が進行したと考えられる。ただし、ろ過初期は ケーキ形成途中でろ材の孔閉塞が含まれるため、直線関係 から外れている。ケーキろ過モデル式は、固形物を多く含 む流体のろ過において広く適用され、実際にケーキ層が形 成されている。

4. おわりに

以上、閉塞モデルの説明および閉塞モデルが単純にあては まるろ過結果をいくつか紹介した。閉塞モデルにより、労 力を費やして得られたデータをより有効に活用する一助に なれば幸いである。 なお、ろ過では閉塞機構が推移することが多くあるが(標 準閉塞→ケーキろ過等)、このようなデータの解析方法も 示されている²⁾。あるいは、いずれの閉塞モデルもあては まらないろ過結果が多くあるが、これらをより一般的に解 析する方法も提案されている⁴⁾。紙面の都合上割愛したの で、参考文献に示した。

参考文献

- 1) Hermans, P. H. and H. L. Bredée: "Principles of the Mathematical Treatment of Constant-Pressure Filtration", J. Soc. Chem. Ind., 55T, 1-4(1936)
- 2) Grace, H. P. : "Structure and Performance of Filter Media", AIChE J. , 2(3), 307-336(1956)
- 3) 角屋正人、沼口徹:"メチルセルロース水溶液のゲル状未溶解高分子除去に対するろ過圧力の影響",
- 化学工学会第39回秋季大会研究発表講演要旨集, A208 (2007)
- 4) Iritani, E., N. Katagiri, Y. Sugiyama: "Analysis of Flux Decline Behaviors in Filtration of Very Dilute Suspension", AIChE J., 53(9), (2007)

■●お問い合わせ

、詳しい内容につきましてご質問がありましたら、下記までお問い合わせください。

【マイクロエレクトロニクス事業部】 TEL.03-6901-5700