PALL NEWS November 2017

Vol.126

ろ過・分離・精製の問題解決

[新製品]

■ 油圧潤滑機器の保護とコスト削減

アサロン・マニホールドマウントフィルター …………1

[最先端ディスプレイ製造工程]

■ 少量薬液ろ過用POUフィルター フォトクリーンPF フィルターカプセル …………3

[技術論文]

[製品紹介]

■ 非滅菌医薬品、飲料水、廃水等のモニタリング、品質管理 ポール・ラボラトリーマニホールド・・・・・・・・・・・・・・・・・12

[製品紹介]

■ ライフサイエンス研究、シートドレイン培養、cGMP準拠細胞調製施設 アレグロ XRS 25 バイオリアクターシステム ……13

油圧潤滑機器の保護とコスト削減

アサロン・マニホールドマウントフィルタ UH210シリーズ / UH310シリーズ

高圧用途でコアレスフィルターを標準化、廃棄物の分別処理軽減

油圧潤滑油用フィルターのアサロンは、 業界最高レベルの高い除粒子性能 (B=2000)を持っています。脈動流、 粘度変化、振動などのストレスに対して 常に高い清浄度を維持できるフィルター です。

長年ご愛顧いただいた9660Kシリーズ の後継製品として、アサロンシリーズに UH210とUH310が追加されました。

マニホールドタイプ コントロールバルブとフィルターが一つの ユニットにまとめられ余分な配管を削減

Manman Courses

ROTECTION THAT THE FEEL

Unnunn

halon

NEW

- ウルチプリーツ構造 低圧力損失、ハウジングの小型化 内側から外側のエレメント流れ方向 交換時にフィルター二次側へのオイル混入を軽減 ● コアレス・ケージレス構造
 - コアのあるフィルターエレメントに比べて60%軽量 エレメントの廃棄コストの低減 (破砕が容易、分別不要、焼却可能)

■仕 様

最高使用圧力	41.4 MPa (圧力変動がない場合)
疲労破壊圧力	24 MPa NFPA T2.06.01 R2-2001 CAT C/90/* (1x10 [°] 回) (試験条件:0 - 28 MPa、1x10 [°] 回)
使用温度範囲	–29 ~ 120 ℃ ※含水流体、水グリコールは最高 60 ℃
バイパスバルブ 設定圧	450 k Pa
差圧指示器 設定圧	340 k Pa
エレメント破裂圧力	1 MPa (JIS B 8356-3/ISO 2941)
ハウジング材質	ヘッド/カバー:ダクタイル鋳鉄 チューブ:炭素鋼
エレメント材質	エポキシ樹脂含浸無機ファイバー ポリマー製エンドキャップ 静電気防止材料使用
シール材質	フッ素ゴム

■ エレメントの構造

UH210シリーズ

ポートサイズ: 1.25" 最大処理流量: 230 L/minまで

UH310シリーズ

ポートサイズ: 1.5" 最大処理流量: 600 L/minまで

■●お問い合わせ

「詳しい内容につきましてご質問がありましたら、下記までお問い合わせください。

【フルーイドテクノロジー&アセットプロテクション事業部】 TEL.03-6901-5780

拡大する有機ELディスプレイ市場 1

2017年における有機ELディスプレイの世界市場規模は約1兆8000億円となっています。中小型ディスプレイはスマ ートフォンやタブレット、ウェアラブルデバイス向けに採用が進み、市場を伸ばしています。

有機EL技術を使ったOLEDディスプレイは、布や紙のように丸めたり、折り曲げたりすることができます。従来は基板 がガラス製でしたが、OLEDでは、基板がプラスチック製フィルムのものができたからです。(図1参照)「曲げられるデ ィスプレイ」の実現により、今までにはない機能を付与することが可能なデバイスとして注目されています。現在もさ らなる実用化に向けた研究開発が進められていますが、新たな用途によっては市場が大幅に拡大すると推測され、 2020年には2兆円を超えると予想されています。

OLEDディスプレイの種類 2

駆動方式別にPMOLEDとAMOLEDの二種類があります。2017年にはAMOLEDの出荷金額が98%を占めると見 込まれ、PMOLEDとの差が大きくなっています。AMOLEDには、テレビやタブレット用途で使用される大型 AMOLEDと、スマートフォン、ウェアラブルデバイスなどの用途で使われる中小型AMOLEDがあります。テレビ向け では生産歩留まりの改善等が必要なこともあり、今後の技術開発次第ですが、徐々に価格が下落し、ハイエンドテレビ 市場向けとして成長が続くと予想されています。

中小型AMOLEDはスマートフォンで採用されて急拡大し、2017年にAppleがiPhoneに有機ELディスプレイを搭載 したことで、有機ELが中小型ディスプレイの主役に躍り出そうな勢いで今後の拡大が期待されています。(図2参照)

PMOLEDは汎用ディスプレイとしての需要拡大、車載向けでの需要拡大などにより出荷数量は増加傾向にあります。

図1: 有機ELディスプレイの開発傾向 (GALAXYはSamsung社の登録商標です。) 出典:IHS Display Japan

フォトクリーン**PF** フィルターカプセル

ろ過用POUフィルター

3 有機ELディスプレイ製造工程の薬液ろ過

リソグラフィ工程などで用いられる薬液では、ナイロン6,6膜 を使用した「P-ナイロン」フィルターやHDPE膜を使用した 「PE-クリーンフィルターが広く使用されています。有機EL ディスプレイ製造工程で使用される薬液では、有機物の溶出 が少ない製品が求められます。製造工程において使用され ている配管、バルブ、継手、ポンプ類、薬品容器に至るまで、 そのほとんどがフッ素系素材で構成されています。従来のフ ォトクリーン製品のカプセルはポリエチレン材質で構成され ていました。業界の要求に対応するため、当社ではPFA材質 のカプセル製品も開発しました。

最先端ディスプレイ製造工程

4 「フォトクリーンPF」フィルターカプセル

「フォトクリーンPF」は、オールフッ素樹脂で構成された省レジスト向けカプセルフィルターです。配管に接続する取付ユニットに装着し、ワンタッチ交換が可能です。カプセルの内部容積を最小化、上部に設置された入口接続部からカプセル内部下側まで独立流路設計により、優れたカプセル内部の液置換性と初期エアーパージ時間短縮を実現しました。従来品の取付ユニットと互換性をもたせるため、既存製品と同様の設計が採用されています。

フィルターメディアはPTFE製で、カプセルの優れた構成材 質とPTFE膜を組み合わせることにより、有機物低減が求め られるレジスト材料のろ過に最適です。

当社で「フォトクリーンPF」を評価した結果をご紹介します。(図4参照)。実験条件は、サンプルに溶剤を注入し、 GC-MS用にサンプリング採取を行いました。取り出した液中の有機物をGC-MSで分析しました。従来のフィルター に比べて、有機物の溶出量が37%低くなり、優れた性能が確認されています。

最先端ディスプレイ製造工程)

ろ追用POUフィルター

フォトクリーンPF フィルターカプセル

図3:フォトクリーンPFの圧力損失

技術開発にしのぎを削る有機ELディスプレイ製造工程において、当社は、お客様の価値創造のために必要な製品 開発を行ってその一翼を担っています。今後も、お客様からの更なる要望にお応えして、タイムリーに製品提供を してまいります。

■●お問い合わせ

詳しい内容につきましてご質問がありましたら、下記までお問い合わせください。

【マイクロエレクトロニクス事業部】TEL.03-6901-5700

5

Technical Paper 技術論文

リソグラフィ用薬液の ポイントオブユース及び 材料製造におけるメタル除去

日本ポール株式会社 応用技術研究所 梅田 徹

本稿は、Umeda, T., et. al, "Metal reduction at point of use filtration," Proc. SPIE 9779, 97791R (2016)., Umeda, T., et. al, "Metal reduction at bulk chemical filtration," Proc. SPIE 10146, 1014629 (2017).を元に再編成したものである

..... 1.はじめに

半導体製造において1Xnmパターン世代に進むにあたり、リソグ ラフィ用薬液に対するメタル削減への要求が厳しくなっている。 これはメタルが半導体デバイスの性能低下や、欠陥を引き起こす ためである[1.2]。多くのリソグラフィ向け薬液は十分にメタル濃度 が低減され供給されているが¹³¹、薬液は供給システムからシリコ ンウェハの流路中にある金属性の部材により汚染される可能性も ある。

イオン交換フィルターは半導体プロセス薬液のメタル除去に一般 的に用いられている。このようなフィルターは強酸性イオン交換 基を使用しており、除去率、交換容量共に優れている。しかしな がら、イオン交換基は化学増幅型レジスト(CAR)中のクエンチ ャーやオニウム塩(イオン性光酸発生剤)のようなイオン性添加 剤も吸着する傾向がある。このため、イオン交換フィルターはト ラックにおけるシリコンウェハのスピンコート直前のろ過である ポイントオブユース(POU)には適さないと言える。

本検討では、まずPOU向けのろ過条件において、イオン交換フィ ルターではなく、ナイロン6,6及び高密度ポリエチレン(HDPE) 膜フィルターによるメタル除去効果について試験溶媒の極性を振 って検討した。

さらに、ナイロン6,6膜によるメタル除去のメカニズムについて も検討した。親水性相互作用クロマトグラフィ(HILIC)では本 検討と同じように、有機溶媒中の吸着を利用している。既存の HLICにおける理論では、親水性物質の吸着は疎水性溶媒と一部 吸着材に固定された水層との間における水層への分配により起こ り、直接吸着材へ捕捉されているわけではないとされている。 アルパートはこれを、濃度を振った水と有機溶媒の混合液中にお ける極性物質に対するHILICによる吸着特性として検討し、有機 溶媒の濃度が高い場合に荷電型(カチオン交換)吸着材及び非荷 電型の親水性吸着材とも正または負に荷電したアミノ酸の吸着効 率が高くなるといった結果により立証している。本検討では、 同様の実験をナイロン6.6及びイオン交換膜を吸着材、メタルを 吸着質として実施し、同様のメカニズムが適用できるか検討した。

一方、材料製造におけるろ過においては一般的にPOUよりも単位 面積当たりの流速は早い。これはメタルの除去効率に悪影響があ る可能性がある。このため、メタル除去性能の流速依存性を検討 した。また、より現実に近いデータとして、未ろ過、ろ過後の有 機溶媒を塗布した300mm φシリコンウェハ上のメタル量の測定 も実施した。

2. 実験

..... 2.1. リソグラフィ用溶媒中のメタル除去

初めに、分析用メタル標準液 (SPEX XSTC-622B) を各メ タルが1ppbとなるように試験液に添加し、チャレンジ液とし た。図1に示すろ過試験スタンドを使用し、1次圧調整による 定流量ろ過を、POUにおける典型的な流量である0.5mL・ sec.¹ (0.02mL・min.・cm²) で行った。その後、ICP-MS (Agilent 7700s)を使用して、チャレンジ液とろ液のメタル 濃度を定量した。試験フィルターはろ過精度5nmのナイロン 6,6膜及びろ過精度2nmのHDPE膜を使用したポール "フォト クリーンEZD-3X"フィルターとした。試験液はプロピレング リコールモノメチルエーテル(PGME)とプロピレングリコール モノメチルエーテルアセテート(PGMEA)の70:30の混合 溶媒及びシクロヘキサノンを使用した。

図1:メタルチャレンジ試験スタンド

2.2. メカニズム検討

メカニズム検討においても上記と同様のろ過方法を用いた。図1 に示したろ過試験スタンドを使用し、ろ過精度5nmのナイロン 6,6膜及び強酸性カチオン交換膜フィルターについて溶媒の疎水 性に対するメタル除去効率の依存性を検討した。溶媒の疎水性は 溶媒と水の混合液及び複数種の有機溶媒を使用することで変化さ せた。具体的にはPGMEの濃度を0,25,50,75,100%と振っ たPGME/水の混合液、70:30のPGMEとPGMEAの混合液、 100%シクロヘキサノン及び100%酢酸n-ブチルを使用した。単 位面積当たりのろ過流速は0.03-0.04mL・min.・cm²とした。

2.3. リソグラフィ用溶媒中のメタル除去流速依存性

ナイロン6,6膜フィルターについて2.2と同様の実験を流速を変 化させて実施した。流速はPOU(低流量側)と材料製造(高流 量側)の両方の条件を含むよう0.04から0.74 mL・min.・cm⁻² と変化させた。

2.4. 未ろ過及びろ過後のメタル添加溶媒を塗布した シリコンウェハ上のメタル量

ろ過、ウェハ処理及びTRXF分析は東京応化工業(TOK)殿によ り行われた。事前試験として、TOK製の電子工業用溶媒をその ままウェハに塗布し、ウェハ上のメタルを測定したところ、検出 されたメタルはなかった。このため、故意にメタルイオンを有機 溶媒に添加することとした。分析用メタル標準液(SPEX XSTC-622B)を試験液に添加し、チャレンジ液とした。図2に 示す試験スタンドを使用し、ある試験流速となるよう事前に調整 した圧力でろ過を行った。その後、図3に示すように未ろ過液及 びろ過液を300mm

のシリコンウェハに塗布し、乾燥させた。

シリコンウェハ上のFeの量を全反射蛍光X線分析(TRXF, TREX632II)により測定した。

試験液は70:30のPGMEとPGMEAの混合液及びシクロヘキサノ ンを使用した。チャレンジ液のメタル濃度は10ppbとした。ろ過 精度5nmのナイロン膜及びろ過精度2nmのHDPE膜を使用した ポール・フォトクリーンDDFフィルターとした。単位膜面積当たりの 試験流量は0.1,0.3及び0.5mL・min.¹・cm²とした。TRXF測定 ではウェハ上の10mmøのスポットを49箇所測定した。

図2:メタルチャレンジ試験スタンド

図3:TRXF(TREX 632III)によるシリコンウェハ上のメタル測定

結果及び考察

3.1. リソグラフィ用溶媒中のメタル除去

PGMEとPGMEAの70:30混合液における結果を図4に、シク ロヘキサノンにおける結果を図5に示す。どちらの溶媒におい てもナイロン6,6膜によるろ過はろ過精度は粗いにも関わらず HDPE膜よりも効果的にメタルが除去されることがわかった。

図4:ろ過によるPGME:PGMEAの70:30混合液中のメタル除去率

-1, -2はそれぞれろ過量100-200, 200-300 mL。結果が0%であった場合は データがないことと区別するため1%として示した。

図5: ろ過によるシクロヘキサノン中のメタル除去率

-1, -2はそれぞれろ過量100-200, 200-300 mL。結果が0%であった場合は データがないことと区別するため1%として示した。

7

Technical Paper 技術論文

3.2. ナイロン6,6膜及びイオン交換フィルターによる メタル除去のメカニズム

図6に溶媒の疎水性(LogP)に対するメタル除去率を示す。 ナイロン6,6膜フィルターでは(図6右)、カチオン(Na⁺, Mg²⁺及びAl³⁺)及びアニオン(WO4²)は有機溶媒のない状態 (Log=-1.38)では捕捉されなかった。荷電によらずイオン の捕捉は溶液の疎水性が増加すると顕著に増加した。これは、 図7に示すようにカチオン、アニオンがともにナイロン6,6膜 の極性基(CONH結合及び末端基の-NH², -COOH)のまわり に生成した薄い水の層に分配したことを示している。

これはイオン交換膜フィルター(図6左)でも同様であるが、 こちらの場合さらにイオン交換の効果が追加されている。有 機溶媒がない状態でもカチオンはよく捕捉されている。有機 溶媒が少ない状態ではアニオンは捕捉されていないという結 果は、アニオンとイオン交換基の電気的反発があることを示 している。この電気的反発はイオン交換膜がナイロン膜より もすべてのLogPにおいてアニオンの除去率が低いことによっ ても示されている。

図6:溶媒のオクタノール-水分配係数(LogP)に対するメタル除去率

横軸1: PGME-DI water混合液; PGME 0, 25, 50, 75及び100%, 2: PGME:PGMEA の70:30混合液, 3: シクロヘキサノン, 4: 酢酸n-ブチル。 混合液のLogPは各構成液の 質量分率より算出した。 金属イオンの形態は添加した金属標準液の材料の状態から推 定した。左: カチオン交換フィルター, 右: ろ週精度5nmナイロン膜フィルター。

図7:親水性吸着材 (ここではナイロン6,6膜) によるメタルイオン 吸着の機構。HILICにおけるメカニズム[5]を元に作成

この結果は、本質的にアルパートの結果を再現していて、 HILICにおいて提唱されているメカニズムがナイロン6,6膜及 びイオン交換膜による有機溶媒中のメタル除去にも適用でき ることを示していると考えられる。

3.3. リソグラフィ用溶媒中のメタル除去流速依存性

3.3.1 PGMEとPGMEAの70:30混合液

図8に示すようにメタルの種類によっては流量をPOUの領域 から材料製造の領域に増加させるのに伴い除去率が低下した。 具体的にはLi, Co, Fe, Cr及びNiの材料製造ろ過条件時の除去 率がPOUろ過条件と比較し低下した。Mg, Ca及びMnは流速 によらず高い除去率のままだった。Na及びKはほとんど除去 されなかった。

結果より、単位膜面積当たりの流速はPGMEとPGMEAの 70:30混合液中において、ある種のメタル不純物除去を左右 する要因であると言える。除去効率を上げるために現行の条 件よりも流速を低下させることや、フィルター数、長さの増 加、厚膜のフィルターを用いるといったことが推奨される。

図8:ろ過精度5nmのナイロン6,6膜フィルターによるPGMEと PGMEAの70:30混合液中のメタル除去効果、単位面積当たり 流速依存性

a.: Li, Na, Mg, K及びCa, b: Mn, Fe, Co, Cr及びNi. 試験はそれぞれ2回 行い平均をプロットした。

3.3.2 シクロヘキサノン

図9に示すようにPGME:PGMEA混合液と同様に、シクロヘキ サノン中でもメタルの種類による流量依存性が見られた。具体 的にはCa及びNaの材料製造ろ過条件時の除去率がPOUろ過 条件と比較し低下した。Li, Mg, Mn, Co及びCrは流速によら ず高い除去率のままだった。Kの除去率は40%程度で流速依 存性は見られなかった。

全体的にシクロヘキサノン中におけるメタルの除去率はPGMEと PGMEAの70:30混合液中と比較して高かった。この傾向は、 3.2で示した親水性吸着材によるメタル除去のモデルに当てはま ると言える。

図9:ろ過精度5nmのナイロン6,6膜フィルターによるシクロヘキサノン中のメタル除去効果、単位面積当たり流速依存性

a.: Li, Na, Mg, K及びCa, b: Mn, Fe, Co, Cr及びNi. 試験はそれぞれ2回行い平均をプロットした。

3.4. 未ろ過及びろ過後のメタル添加溶媒を塗布した シリコンウェハ上のメタル量

3.4.1 PGMEとPGMEAの70:30混合液

フィルターによる有機溶媒中のメタル除去効果をシリコンウ ェハ上で評価した。図10に示すように未ろ過のFe添加PGME とPGMEAの70:30混合液をウェハに塗布した場合のウェハ 上の単位面積当たりFe量は約30×10^eatom・cm²であった。 ろ過精度5nmのナイロン6.6膜フィルターろ過後液の場合は <1×10⁶atom・cm²へと低下した。ろ過精度2nmのHDPE 膜の場合はシリコンウェハ上のFeは低下しなかった。

図10に示したICP-MSによる評価において、Feは流速依存性が ほとんどなかったが、ウェハ上の結果においても同様であった。

Filtered, N66, 0.1 mL·min.-1·cm-2

Filtered, N66, 0.3mL·min.-1·cm-2

Unfiltered, 10ppb metal spiked solvent

Filtered, N66, 0.5mL·min.-1·cm-2

図10:ろ過及び未ろ過のPGMEとPGMEAの70:30混合液を塗布したシリコンウェハ上のFe量、ろ過流速依存性

Filtered, HDPE, 0.1mL·min.-1·cm-2

Filtered, HDPE, 0.3mL·min.⁻¹·cm⁻²

Filtered, HDPE, 0.5mL·min.-1·cm-2

図10:ろ過及び未ろ過のPGMEとPGMEAの70:30混合液を塗布したシリコンウェハ上のFe量、ろ過流速依存性

3.4.2 シクロヘキサノン

図11に示すように、未ろ過のFe添加シクロへキサノンをウェハ に塗布した場合のウェハ上の単位面積当たりFe量は約30× 10⁶atom・cm²であった。ろ過精度5nmのナイロン6,6膜フ ィルターろ過後液の場合は<1×10⁶atom・cm²へと低下した。 ろ過精度2nmのHDPE膜の場合はシリコンウェハ上のFeは低下 しなかった。

PGMEとPGMEAの70:30混合液の場合と同様に、ICP-MSの結果においてシクロヘキサノン中でもFeの除去率の流速依存性はほとんどなく、シリコンウェハ上の評価においても同様であった。

Filtered, N66, 0.1mL·min.-1·cm-2

Filtered, HDPE, 0.1mL·min.-1·cm-2

Filtered, N66, 0.3mL·min.⁻¹·cm⁻²

Filtered, HDPE, 0.5mL·min.-1·cm-2

図11:過及び未ろ過のシクロヘキサノンを塗布したシリコンウェハ上のFe量、ろ過流速依存性

Unfiltered, 10ppb metal spiked solvent

Filtered, N66, 0.5mL·min.-1·cm-2

Filtered, HDPE, 0.3mL·min.-1·cm-2

Technical Paper 技術論文

4. 結論

PGMEとPGMEAの70:30混合液及びシクロヘキサノンにお いて、ナイロン6.6膜によるろ過はHDPE膜と比較してろ過精 度によらず、顕著なメタル低減効果があることがわかった。

メタル除去のメカニズムとしては、HILICと同様にメタルが吸 着材表面に生成した水層へ分配するモデルが当てはまること が、メタル除去率の溶媒疎水性依存性結果より示された。

また、単位面積当たりの流速はナイロン6,6膜フィルターを使 用した有機溶媒中のメタル除去における重要な要因であるこ と及び、材料製造時のろ過において除去率の向上の可能性が あることが示された。流速依存性はより親水性の溶媒におい て顕著であった。

いて、ナイロン6.6膜ろ過によるメタル低減効果が示された。

以上の結果より、ナイロン6.6膜によるろ過が1Xnm世代のパ ターン製造に向けたリソグラフィプロセス用溶媒のメタル除 去に推奨できると言える。

謝辞

未ろ過及びろ過後のメタル添加溶媒を塗布したシリコンウェ ハ上のメタル量測定試験を実施いただき、また助言をいただ きました、東京応化工業株式会社、中田明彦様、齋藤弘樹様 に感謝申し上げます。

参考文献

- [1] Kimura, Y., Hattori, N. and Mashiko, Y., "Influence of Very-small-quantity Metal Contamination(Ca.Mo.Zn) on Device Yield," Proc. ISSM 2002, pp.57-60 (2002).
- [2] Hagiwara, T., et al, "Study on Cone-defects during the Pattern Fabrication Process with Silicon Nitride," Journal of photopolymer science and technology 28(1), pp.17-24 (2015).
- Johokiko (Ed), Optimum selection and effectiveness improvement of filtration process, Johokiko, pp.456-464 (2010).
- [3] Capitanio, D., Mizuno, Y., and Leeca, J., "Metal Ion Removal from Photoresist Solvents," Proc. SPIE 3678 (1999).
- [4] Buszewski, B. and Noga, S., "Hydrophilic interaction liquid chromatography (HILIC)-a powerful separation technique," Anal. Bioanal. Chem., 402, 231-247 (2012).
- [5] Alpert, J., A., "Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds," J. Chromatogr., 499, 177-196 (1990).

■●お問い合わせ

「詳しい内容につきましてご質問がありましたら、下記までお問い合わせください。

【マイクロエレクトロニクス事業部】 TEL.03-6901-5700

メンブレンフィルター(MF)法を用いてサンプル溶液の微生物学的検査を 行うお客様のご要望にお応えして、デザインを一新しました。

- ■工具を用いずに簡単に分解・組立 ■ 右利き/左利きに関係のない操作性 →→ 316Lステンレススチール製 バーピング^{*1}と逆流を防ぐ構造
- ■3連マニホールドを2つ組み合わせ
- アダプター^{*2}を交換するだけ

- 消毒や滅菌が容易
 - 設置場所や吸引する方向を変更可能
 - 耐薬品性
 - より清潔な作業スペースを確保
- → 6連マニホールドとして使用可能
 - 様々なフィルターファンネルを使用可能

*1 ゲップのように空気が抜けること *2 アダプターは別途注文が必要

アダプター

■●お問い合わせ

詳しい内容につきましてご質問がありましたら、下記までお問い合わせください。

【ラボラトリー事業部】 TEL.03-6386-0993

製品紹介(ライフサイエンス研究、シートドレイン培養、cGMP準拠細胞調製施設

独自の撹拌技術が細胞培養のパフォーマンスを向上 アレグロXRS25バイオリアクターシステム コントロールタワーが新しくなりました!

アレグロ XRS25バイオリアクターシステムは、独 自の撹拌、制御技術を備えたワーキングボリューム 2~25 Lのシングルユースバイオリアクターシス テムです。哺乳類細胞の浮遊培養においてpH、溶 存酸素濃度(DO)、温度のモニタリングや制御操作 が可能で、一般的なライフサイエンス研究からシ ードトレイン培養、完全にcGMP準拠を要求される 製造施設まで幅広い用途に適しています。

NEW

独自の二軸撹拌による高い撹拌効率から達成できる高い酸素移動速度によって、生細胞数、生細胞率、 発現レベルが高く、従来のロッキングシステムよりも優れた性能を発揮します。

さらに、Pall Link監視制御データ収集(SCADA)ソフトウェアパッケージを備えた"mPath"コントロー ルタワーにより、操作性がさらに向上し、cGMP適合性を確保することが可能です。

バッチ培養例 高い細胞培養パフォーマンス

従来のロッキングシステムと比較して、細胞密度は18%、抗体力価は30%高い結果が得られました。 (同一の培地とシードを用いた場合)

アレグロ XRS25バイオリアクターシステムの優れた撹拌性能は、哺乳類細胞(CHO、ハイブリドーマ) および昆虫細胞のバッチ培養、フェドバッチ培養、灌流培養においても有効であることが示されています。

アレグロ XRS 25 バイオリアクターシステム

独自技術の二軸型ロッキングシステム

優れた撹拌と物質移動を実現

- 二軸撹拌により、コンテイナー内で三次元の渦を発生させることで、従来のロッキングシステムと比較して 約3倍高い撹拌効率を実現
- 同様の撹拌条件で、従来のロッキングシステムと比較して、約3倍高い撹拌効率
- k.a 値比較でも、優れた物質移動特性

お客様の工程に合わせてカスタマイズ

- 標準仕様のアレグロ XRS25バイオコンテイナーには 液体用と気体用のチュービングがすべて備えられており ほとんどの標準的なプロセスや運転に対応
- バイオリアクターシステムのカスタマイズをサポート (例:クリーンパック無菌コネクターの追加やバイオ コンテイナーの簡単な変更、周辺プロセスも含めた 自動化プロセスへの組み込みなど)

アレグロ STRシングルユース・バイオリアクターとの使用例

アレグロ STRシングルユース・バイオリアクターは、直接駆動型のボトムインペラと キューブ型のバイオコンテイナーが、低速回転でも効率的な撹拌を実現し バッチ培養、フェドバッチ培養ともに高い生細胞数と生細胞率を達成することが可能です。

シリーズ内でスケーラビリティのある200 L、1000 L、2000 Lの製品ラインナップは 一貫した細胞培養パフォーマンスを発揮します。

■●お問い合わせ

▼ 詳しい内容につきましてご質問がありましたら、下記までお問い合わせください。

【バイオファーマ事業部】 TEL.03-6386-0995

●マイクロエレクトロニクス事業部 ☎03(6901)5700

203(6386)0995

203(6386)0993

203(6901)5760

- ●フルーイドテクノロジー&
 - アセットプロテクション事業部 ☎03(6901)5780 **2**03(6901)5860
- ●エアロスペース事業部
- ●バイオファーマ事業部
- ●ラボラトリー事業部
- ●食品事業部
- ●メディカル事業部 **203**(6386)0991

November 2017 Vol. 126

[編集発行]

日本ポール株式会社 マーケティング・コミュニケーショングループ 〒163-1325 東京都新宿区西新宿6-5-1 **2**03 (6367) 1691 Editor-in-Chief : A.Miki : H.Shimogawa Graphic Designer Contributing Authors : S. Yamamoto H. Kawasaki T. Umeda

- K. Saito
- Y. Ishikawa